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In the context of developing a machine to automatically crochet 
fabrics, a suitable design tool tailored to the new technology and 
enabling its application is crucial. The paper offers first insights 
into the prototype of the crochet machine and presents the 
approach of such a design tool implemented in Python for 
creating, modeling and generating the machine instructions. With 
a graphical user interface (GUI), a flat crocheted fabric can be 
designed by arranging international crochet symbols for slip stitch 
(SL), single crochet (SC) and half double crochet (HDC). Built-in 
error checking mechanisms, following the rules of crochet and the 
machine’s constraints, will aid inexperienced crocheters in this 
process. Based on the resulting computer representation as an 
array containing short strings for the respective stitches, a 
topology-based 3D model at the meso scale is automatically 
created as a preview of the designed crocheted fabric. Also, 
machine instructions to automatically crochet the fabric with the 
crochet machine prototype are generated by mapping the 
computer representation of the stitches to macros of G-code and 
appending them in a valid order. The straightforward design tool 
shows the capabilities of the crochet machine and is extensible for 
further enhancements. Through modeling, the structure of the 
machine-crocheted fabrics is presented for the first time. In 
comparison to manually crocheted fabrics, the machine-crocheted 
ones exhibit a technical front and back, since stitches are formed 
by the machine only from one side. 
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1 Introduction 

Crochet as a textile technology follows the basic principle of interlooping to mechanically work yarn into a 

textile fabric [1,2]. In comparison to knitting as the prominent interlooping technology, crochet is defined 

by the intermeshing of stitches “not only vertically with those in the previous row, as in knitting, but 

laterally as well — with others in the same row” [3]. Crocheted fabrics are generally used as clothing, 

home textiles or plush toys, but are so far not applied in the technical field [4,5]. However, research 

reports promising mechanical [6,7] and acoustic properties [8] and potential applications as textile 

sensors [9] or scaffolds for tissue engineering [10]. Automation of crochet with a properly accessible 

design tool for this new type of technology is therefore of high economic interest and could replace the 

poor working conditions under which commercially crocheted products are currently manually produced. 

Contrary to their name, the established crochet (galloon) machines do not produce real crocheted 

textiles. This is because, as is usual with warp knitting machines, several yarns are processed, and the 

lateral connection of the stitches is realized via a weft inlay and not via interlooping [11]. Thus, a stitch is 

not formed according to crochet’s definition by drawing a loop through both the corresponding stitch in 

the previous row and the last formed stitch in the same row [2,3].  

A first attempt of a machine to automate flat crocheting was reported in 2019 [12,13]. Currently, this 

approach of a real crochet machine is being extensively improved. Similar to single jersey flat knitting 

machines, the textile is suspended on horizontally arranged latch needles, but additionally, there is a 

single special needle opposite to this needle bed functioning as a crochet hook. The latter holds and 

manipulates the leading loop (LL) with which each stitch starts and ends [14]. In this context, it is also 

necessary to develop a method for designing machine-crocheted fabrics to operate the complex 

machine and present its possibilities.  

Conventionally, manually crocheted fabrics are designed by manufacturing instructions in text form or by 

symbols representing the stitches on paper. Design tools for manually circular crocheted fabrics 

considering their construction rules were developed by researchers. Çapunaman et al. [15] propose a 

computational framework to generate crochet patterns corresponding to 3D objects as inputs, which can 

be designed with common computer-aided design (CAD) tools. By considering the individual style of the 

crocheter based on analyzed crochet swatches, instructions are output to crochet the 3D objects. With 

an alternative approach, Guo et al. [14] also compute text-based instructions for crochet patterns based 

on input 3D geometries. In this regard, stitches are represented by tiles, which are arranged 

automatically, to model and visualize the 3D textile to be crocheted. Besides the visualized mesh, 

instructions for manual crocheting are generated. Furthermore, Nakjan et al. [5] created a tool to 

specifically design 3D crocheted dolls (Amigurumi) by 2D sketches interpreted as 3D primitives (sphere, 

tear drop or cylinder), which are then compiled into crochet instructions. 

Regarding the design of machine-produced textiles, commercial design systems are commonly used for 

versatile V-bed weft knitting machines [16]. M1plus from Stoll and KnitPaint from Shima Seiki are 

prominent examples of such and provide pixel-based programming interfaces [16-18]. In a tabular 

representation (columns for needles and rows for subsequent knitting cycles), stitches and operations 

represented by icons can be arranged graphically to design a textile fabric. Further visualizations, such 

as a simple running yarn notation or an elaborated 3D simulation of the yarn and the machine operations 

(in the case of KnitPaint), as well as functions for automatic error detection, simplify the development of 

knit programs [16,18,19]. Because these systems are predominantly machine-specific, research is 

conducted to enable high-level programming by manipulating 3D objects and focusing on the output 

structure independent of the specific machine [14,17,18,20]. 

3D previews of the designed textile and its patterns are state of the art and facilitate the development 

process [21,22]. Describing an idealized spline-interpolated yarn center path, taking into account the 

correct topology (relative orientation of the yarn segments to each other) at the meso scale, is a simple 

and flexible approach for generating such a preview [4,21,23,24]. This approach is, for example, 

implemented in the commercial Warp Knitting Pattern Editor 3D from TexMind [25]. With this program, 

warp knitted textiles can be designed by creating lapping diagrams for warp knitting machines with a 

graphical user interface (GUI) [26,27]. 
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Following a similar approach, manually crocheted fabrics were modeled and subsequently used for finite 

element method (FEM) simulations in a recent publication [4]. These demonstrated anisotropic behavior 

and a uniform force distribution during displacement of the manually crocheted fabrics. 

Here, a straightforward and extensible tool for designing machine-crocheted planar fabrics according to 

the current prototype of the first real crochet machine is presented. Such a tool is necessary because 

existing tools are not applicable to this new type of textile machine and, in addition to the hardware, 

software that enables the use of the machine must also be made available to potential users. In this 

context, international stitch symbols can be arranged with a GUI to create a fabric to be crocheted 

consisting of the basic stitch types, i.e. slip stitch (SL), single crochet (SC) and half double crochet 

(HDC). For convenience of use, there are functions for automatic error checking and ensuring that the 

designed fabric follows the rules of crochet and can be fabricated by the machine. The description of 

machine-crochetability is an important innovative aspect. From the computer representation, on the one 

hand, the G-code for controlling the machine is derived, and on the other hand, a 3D preview is 

generated by a topology-based model with parametric key points. The generated G-code can be loaded 

directly into the crochet machine to produce the designed crocheted textile. Describing the structure of 

machine-crocheted stitches is another original aspect.  

2 Crochet machine design tool 

The developed design tool for flat machine-crocheted fabrics is presented in this section. Firstly, the pro-

totype of the novel crochet machine is introduced, then the GUI and error checking of the tool are de-

scribed. Also, the approaches of generating the topology-based model as well as the G-code machine 

instructions are introduced. 

2.1 Structure of the crochet machine 

The developed tool is based on the specific capability of the prototype crochet machine currently in pro-

gress, which is a further development of the initial approach presented in references 12 and 13. The 

schematic setup of the crochet machine is depicted in Figure 1. Opposite a needle bed (1) with needles 

(2), on which the lastly formed crochet stitches are suspended, another special needle (3) is arranged. 

An individual needle selection is achieved with mechanic multiplexing by carriage 4. Needle 3 functions 

as the crochet hook, which forms the crochet stitches and always retains the current leading loop of the 

crochet process. This special needle in the carriage 5 can be driven to each stitch position according to 

the needle bed (currently 18 positions) to build there a new crochet stitch based on an old one. As an-

other fundamental machine element, a yarn guide (6) moved by carriage 7 is involved in stitch formation 

by feeding the yarn into the special needle. Weights serve as a take down and stretch the fabric over a 

knock-over verge (8). 

As can be seen in Fig. 1, the basic setup of the crochet machine prototype needs various axes for the 

complex crochet motion sequences. Thus, a mechatronic approach was chosen in contrast to the rather 

mechanical one of conventional textile machines [19]. In this regard, the machine's electric motors are 

controlled with G-code commands, similar to 3D printers or computerized numerical control (CNC) mill-

ing machines [13]. 
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Fig. 1 Schematic structure of the crochet machine prototype viewed from top with indicated main axis. 1) needle 

bed, 2) needles, 3) special needle, 4) individual needle selection carriage, 5) special needle carriage, 6) yarn guide, 

7) yarn guide carriage and 8) knock-over verge. 

Due to the prototype status of the machine, no details can be shown here. Thus, the principle of the 

stitch formation is presented in a more general way in Fig. 2. In this example, the working stitch and its 

right neighbor were built in the previous row from right to left and are still suspended on the needles of 

the needle bed in the regions marked by the red dots. The LL of the last stitch of the current row (going 

to the right) is held by the special needle. To build a new SL, yarn is drawn through the working stitch 

from behind the fabric by the special needle, which establishes the vertical anchoring of the new stitch. 

This step is depicted in Fig. 2 b) as well as the yarn end going to the yarn stock. The newly created loop 

is then also pulled through the previous LL, which is the horizontal stitch anchoring and establishes a 

new LL, as shown in Fig. 2 c). The newly created SL is then suspended at the respective stitch position 

to finish the machine operation. 

 

Fig. 2 Principle of creating a SL with the crochet machine. (a) Initial situation with the leading loop (LL) held by the 

special needle and the working stitch as well as the neighboring stitch suspended on the needles of the needle bed 

in the region marked by the red dots. (b) New yarn forming a loop and being drawn by the special needle through 

the working stitch. (c) Afterwards the loop is drawn as the new LL through the old one. 

Creating a SC necessitates an additional step of drawing a second new loop through the first loop drawn 

through the working stitch (cf. Fig. 2 b)). This second loop is not drawn through the fabric but is drawn 

through the old LL after it has been drawn through the first loop. For HDC, as the most complex stitch 

the machine can currently create, an additional loop, not drawn through the fabric, is grabbed by the 
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special needle before the steps of a SC are performed. The resulting stitch structures are depicted in 

Fig. 6 and 7. 

In the recent version of the program, fabrics consisting of SL, SC and HDC can be created in arbitrary 

order. In general, the crochet machine is designed to automate flat crocheting and cannot crochet in the 

round. Therefore, only two-dimensional fabrics can be created and are in the focus of the design tool. 

Currently, stitch transfer is not possible but might be added in the future. Also, crochet through the back 

loop is not possible. 

Due to the lateral interlooping of crochet stitches (cf. Fig. 2), the alternating crochet direction within each 

course must be considered. By default, the crochet direction of the first course with the foundation chain 

stitches (CHs), is set from right to left so that the stitches of the second course are assembled from left 

to right. CHs are also used for transitions, with which each course starts (except for the CH course). 

According to the height of the next stitch, one CH is used as a transition (T1) for SL and SC while two 

(T2) are necessary for HDC. The CHs are formed in the direction of the previous course and then placed 

at the corresponding needle positions of the course’s start. In contrast to the other stitches, the loops of 

the CHs are pulled through only one instead of two previously formed stitches [2]. Thus, CHs do not 

count as crochet stitches, hence they can be found in other technologies such as a pillar stitch in warp 

knitting [28].  

2.2 Graphical user interface and error checking 

A pixel-based, machine-specific approach was chosen to correspond to the industrial standard programs 

[16-18] and therefore potential users are in principle familiar with the interface. Also, its tabular structure 

suits well the two-dimensional fabric structure. The existing approaches of design tools regarding manual 

crochet [5,14,15] cannot be adopted, because they deal with circular crocheting. Circular crocheting 

differs significantly from flat crocheting and the machine implementation also imposes some deviations 

to manual crocheting. The presented tool is implemented in Python 3 and built as cross-platform 

software. 

The chosen approach of representing machine-crocheted fabrics with international crochet symbols, 

considering the crochet machine’s operation, is presented in Fig. 3. In contrast to the alternative 

representation of crocheted fabrics with transitions outside the stitch columns, used for instance in 

reference 4 or 14, here, the construction of the fabric is more concisely represented, since it is intuitively 

comprehensible how the stitches are intermeshed with those above and beneath and on which needles 

they can be formed. The intermeshing is indicated in Fig. 3 by the red arrows, which also illustrate the 

stitch formation by drawing loops both from the previous stitch in the same course and from a stitch in 

the course below at the same wale. Consequently, wales correspond laterally to needle positions and 

courses chronologically to the stitches formed successively at the same needles. As usual, the top 

course corresponds to the last produced course. The first transition from course 1 to course 2 is a 

special case and does not have any stitches beneath it. This is due to the workflow of manually 

crocheting the first CH course onto the needles of the machine and putting the leading loop in the 

crochet machine’s hook before the automated production starts. 



259 
 

 

Fig. 3 (a) Description of the symbols used and (b) illustration of the representation of crochet fabrics in the GUI 

with exemplary stitches. Yellow arrows denote the crocheting direction of each course and red arrows show the 

connections of the stitches according to the crochet procedure. The ellipsis indicates further possible courses and 

wales. The needles of the machine are associated with the wales. 

In addition to color differences, the international crochet symbols of the Craft Yarn Council, which 

provides guidelines and standardization for crocheted textiles [29], are used to label stitches in the 

developed GUI (cf. Fig. 3). This is, in principle, similar to conventional pixel-based programming 

interfaces [30]. A stitch type can be selected via the toolbar and a position in the fabric can be assigned 

by clicking on the respective tile. Stitches can be erased with the “blank tile” tool. The needles on which 

the stitches of the wales are created are defined by the needle indicator (NI) at the bottom of the GUI. 

According to the wale position, a stitch is automatically assigned to a specific needle position in the 

machine. This allocation based on the topology also remains in the array data structure. During 

production, stitches cannot be moved to different needles by the machine, so that no specific algorithms 

for needle scheduling or transfer planning are needed, which are for example discussed by McCann et 

al. [17] or Lin et al. [31] regarding knitting machines. However, the user can change the needle allocation 

in the GUI. 

Besides common options, like loading and saving, the export to G-code and the model generation can 

be selected in the dropdown menu. The yarn tension can be set in the menu “Edit”. Fig. 4 depicts the 

developed GUI, which shows the technical front, with an exemplary fabric. 
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Fig. 4 Overview of the developed graphical user interface (GUI) with the computer representation of an exemplary 

crocheted fabric. The technical back of a topology-based model of the designed fabric is displayed in Fig. 8a. 

The GUI is built using the Python version Tkinter [32] of the open-source GUI toolkit Tk. Stitch selection 

at the toolbar is implemented with buttons, while the tiles in the canvas region, which the stitches can be 

assigned to, are label widgets. By clicking on these modifiable labels, the internal representation in the 

data array is changed to the selection if that operation is determined to be valid by the program. This 

data array matches spatially the data displayed in the canvas region. However, to facilitate 

implementation, the indices of the data array (i and j, cf. Fig. 5 and the Python pseudocode in the 

supplementary materials) differ from the displayed NI and course indicator (CI) in that they start from 

zero and the courses are counted from top to bottom. NI and CI cannot be modified directly, instead, 

they are automatically designated or can be set manually in the “Edit” menu. By clicking the border 

regions surrounding the tiles, the canvas is automatically expanded in the direction the border region is 

facing and CI/NI are updated accordingly. For example, by clicking the left border region, a column of 

modifiable labels is added in between the left border column and the inner area containing the tiles, while 

the NI would be adjusted. If a row or column next to the border region contains no more stitches, it will 

be deleted automatically.  

With the current state of the crochet machine prototype, there are the following constraints compared to 

manual crocheting: 

• Only production of SLs, SCs, HDCs and transitions with one as well as two CHs are possible 

(constraint a) 

• First course of CHs is to be manually crocheted from right to left with no CH beneath the first 

transition called first lay over (FLO) (b) 

• Second course is always crocheted to the right by the machine (c) 

• Fixed width, no increase or decrease (d) 

• A stitch or transition must have a previously formed stitch or transition beneath (with FLO as 

exception) (e) 

• Before each stitch in a course (according to the direction) has to be a previously created stitch or 

transition (f) 

• Before a start position of the course, which has to be a transition, there must no other transition 

or stitch (g). 

These machine specific constraints are checked by the program to aid users in designing crocheted 

fabrics with the GUI. A section of the program for error checking and ensuring that the designed crochet 

pattern is producible with the machine is shown as Python-based pseudocode in the supplementary 
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material. Compliance checking with regard to the listed constraints a to g is indicated in the pseudocode 

accordingly. 

In principle, error checking is based on completely traversing the array with the crochet pattern (as 

shown in Fig. 5) once, checking for any possible error that conflicts with the machine-specific constraints 

and general crochet rules. Thereby all possible errors can be found, which are considered. Due to the 

ongoing development of the machine, the error checking does not claim to be absolute. According to the 

machine-specific and general crochet rules reflected in the error checking (see also the supplementary 

materials), the machine-crochetability is defined. 

Regarding the verification of compliance with important general crochet rules, it is, for example, checked 

that the crochet direction alternates with the courses or that HDCs follow on T2 while SLs or SCs follow 

on T1. The latter is implemented by inspecting the parent stitch beneath the transition and the target 

stitch (next stitch in crochet direction). Usually in manual crochet each course starts with a transition, 

nevertheless, this rule is additionally reflected in constraint g because it is a strict limit of the machine. 

Constraint g is checked, as can be seen from the Python-based pseudocode shown in the 

supplementary material, by calculating the correct position of the transition of each course. There can 

only be one transition per course at this position. Also, everything that is not a void and is positioned 

before the transition (according to the crochet direction) is recognized as an error. The locations of the 

transitions correspond to the alternating crochet direction of each course. This pattern is based on the 

definition that the transition of the FLO is on the left and the corresponding course heads to the right. 

Thus, this complies with the constraint c. Furthermore, this also results in the direction of the first CH 

course to the left, which is a part of constraint b. 

Regarding b and the special case of the first transition as the start of the automated production, it is 

controlled that there is no CH but a void in the crochet pattern under FLO. In general, as part of the error 

checking and for compliance with constraint e, it is checked for each stitch that there is a parent stitch in 

the course beneath it. Here the CH course is an exception, because it is the first course with no parent 

stitches. 

The CH course is also taken as the basis for the fixed width of the fabric (restriction d) by checking that 

there are no more stitches in the other courses than the number of CHs + 1 (considering the special 

case of the missing CH under the FLO). Together with the calculation of the correct positions of the 

transitions, this ensures that the designed fabric has a constant width. 

Moreover, constraint f is respected by searching for voids between stitches within a course. If there are 

voids between stitches, the rule is broken that before a stitch there must be previously formed stitch or 

transition, and an error is raised. Generally, the errors are marked by a text output and by a red border 

around the corresponding tile. Error resolving is currently left to the user to avoid correcting an error 

contrary to the user's intent when there are multiple causes. The user can also start the error checking at 

any time by clicking an option in the edit menu. 

Compliance with constraint a is ensured by providing only the stitch types that can be created by 

machine for selection (cf. Fig. 4). Thus, algorithms for error checking are not needed in this case. As a 

further method for error prevention, the CHs of the first course are automatically set depending on the 

user assigned stitches in the second course. Also, a transition is automatically set when a stitch is 

assigned to a previously unoccupied tile above the existing stitches, whereby a new course is 

instantiated. 
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Fig. 5 Computer representation of a crocheted fabric graphically illustrated in the GUI at the left side and in an 

array with stitch label strings as the basic data structure at the right. Regarding the latter, the indices i and j of the 

internal data structure correspond to the iteration directions of the pseudocode in the supplementary material and 

are displayed in contrast to CI and NI. The special first transition is called first lay over (flo). The model generated 

from this information is shown in Fig. 9. 

The structure of the designed machine-crocheted fabric is saved in a text file. Each stitch or transition is 

labeled with a short string and the topology is maintained by saving the courses in rows of an array, 

whereas the columns correspond to the stitch sequence of the GUI representation. An example of such 

an array representation of a crocheted fabric together with the respective GUI is depicted in Fig. 5. This 

simple representation contains all the necessary information about the fabric’s structure. The used string 

labels correspond to the standard international crochet stitch representation in text form [29]. These 

strings can be mapped via dictionary data structures to G-code macros for automatically producing the 

corresponding elements or to the key point representation of the unit cell for modeling. 

The array as the basic data structure for the design of automated crochet fabrics was intentionally 

created to be simple and clear. This allows experienced users, who are not dependent on the support of 

the GUI, to design crocheted fabrics with a simple text editor while benefiting from the preview in the 

form of modeling as well as from the automated generation of the G-code program for machine 

production. 

2.3 Preview with topology-based crochet model 

According to the topology-based modeling approach, the yarn path is simplified in that the exact 

geometry is not considered, but rather the relative orientation of the segments to each other [21,23]. The 

center yarn path at the meso scale for each stitch and transition is represented by a set of parameterized 

key points in a NumPy array, which can be seen as a unit cell. By virtually shifting and assembling the 

unit cells, a fabric can be created, which entails modifying the key point coordinates and appending the 

key points in one list in the correct order. A realistic representation can be achieved by spline-

interpolation and volume sweeping along the yarn path. The freeware program TexMind Viewer [33] can 

be used for visualizing the modeled crocheted fabric. For storing the digital representation of the 

crocheted fabric, the open access Python library pytexlib [34] is used. Further details on the modeling 

approach can be found in reference 4 where manually crocheted fabrics were modeled. The present 
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paper is based on this preliminary work. However, due to the different structures of manually and 

machine-crocheted fabrics, new unit cells had to be defined and the logic was extended.  

The width and spacing of all stitches in the x-direction (L) is with the current prototype about 5 mm due to 

the pitch of the needle bed. For modeling purposes, a realistic yarn diameter is approximated to be 

0.6 mm. Unit cells of different stitches can be shifted horizontally with multiples of the same translation 

vector to assemble a course. Unit cells shifted to form a course of three stitches of each type with a 

crochet direction to the left are shown in Fig. 6. The vertical spacing of the courses (y-direction) depends 

on the stitch height, which is different for distinct stitches and is influenced by the yarn tension. Hence, 

the stitch height can be adjusted with the yarn tension factor (YTF) according to equations 1 to 3, where 

Hsl, Hsc and Hhdc are the heights of the SLs, SCs and HDCs, respectively (cf. Fig. 6). L denotes the 

stitch’s width, which the height is based on for realistic stitch size. 

𝐻𝑠𝑙 = 𝑌𝑇𝐹 ∙ 1.25 ∙ 𝐿            (1) 

𝐻𝑠𝑐 = 𝑌𝑇𝐹 ∙ 1.5 ∙ 𝐿            (2) 

𝐻ℎ𝑑𝑐 = 𝑌𝑇𝐹 ∙ 1.75 ∙ 𝐿            (3) 

If different stitch types are in a course, the height of all stitches is adjusted to the highest type in that 

course. This is because, on the one hand, the machine's take-off elongates the stitches evenly and, on 

the other hand, a uniform stitch height is needed for a suitable connection to the next course in the 

modeling. The translation vector for vertical shifting depends on the height of the previous course.  

 

Fig. 6 Unit cells of the machine-crocheted stitches as key point representation with the coordinate system (top) as 

well as spline-interpolated and volume-swept models displayed with the TexMind Viewer (bottom). The blue lines 

separate the three unit cells shown as a course in each case. The heights and widths of the stitches are indicated. 

(a) Chain stitch (CH); (b) slip stitch (SL); (c) single crochet (SC); (d) half double crochet (HDC). Note that the CHs 

are not directly in the x-y-plane, but slightly tilted to get a more realistic interlooping to the following course. 

To model the fabric, the GUI output array containing the topology and string labels for stitches and 

transitions (cf. Fig. 5) is iterated beginning with course 1 in wale m. Depending on the course’s direction, 

the strings are mapped to left or right-pointing variants of the unit cells of the stitches. According to the 

topological position of the string labels in the array, corresponding translation vectors are added to the 

key point coordinates of the unit cells. Also, the key points are modified to match the required stitch 

length and height. The adjusted key point coordinates are appended in a monolithic list following the 

crochet sequence and iteration of the array. Regarding the assignment of the correct unit cell for a 

transition, the succeeding and previous stitches are considered to ensure appropriate intermeshing. The 

final key point list and yarn diameter are saved in comma-separated value (CSV) files, which can, for 

example, be opened with the TexMind Viewer for spline-interpolation and visualization. 

2.4 Generating machine instructions 

As stated in section 2.1, the prototype machine is controlled by G-code commands. In general, for 

forming a stitch, multiple G-code commands have to be executed. Relying only on a simple text or CSV 

data structure containing G-codes would require multiple lines to be changed for modifying a single 

stitch. In contrast to that, it is much simpler to work on an abstract data representation (the data array, as 

in Fig. 5 right side). In this case, to modify a single stitch only one cell in the data array has to be 
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changed, additionally the data array preserves the topological information of the stitches. By doing so, 

however, it is crucial to have an efficient way to translate the abstract computer representation of the 

fabric to machine-executable commands (G-codes). 

For this translation, the GUI output array containing the information about structure and topology (cf. Fig. 

5) is used. Analogous to the generation of the topology-based model, the array is traversed according to 

the crochet sequence and, depending on the direction of each course, the exact stitch type (such as SL 

to the left or T2 to the right) is assigned as a string for each entry of the GUI output array. These specific 

strings are mapped utilizing dictionary data structures to text files containing the required G-codes for 

each stitch type as macros. 

Starting with the second course (due to the manual building of the first CH course), the G-code 

instructions read for each stitch are appended consecutively and the result is written into a new text file. 

To save computing time, the G-code text file for each stitch type is read only once and stored in a 

dictionary, from which the data for subsequent stitches of the same type can be obtained. The G-code 

macros are programmed relatively and thus the absolute position of the machine elements does not 

have to be considered. This allows arbitrary sequence of stitches without needing to adjust the G-codes 

in the macros. 

Advantageously, the abstract representation can also be more readily edited, more efficiently saved and 

more easily checked for errors. Especially the last part greatly simplifies the error checking algorithm, 

since to check one stitch a single entry of the array can be queried instead of multiple lines of G-code. All 

in all, this approach ensures machine-manufacturability but also improves the overall workflow.  

Because the tool operates on the stitch level, a flexible interchangeability of the macros with the machine 

instructions is ensured. On the one hand, this is advantageous regarding the machine under 

development, and on the other hand, it enables the design tool to be used for alternative crochet 

machines in the future. The stitches could also be mapped to text files with instructions for manual 

crochet to generate crochet patterns in text form. 

The G-code generated by the presented tool can be directly executed by the prototype crochet machine 

to produce a corresponding crocheted fabric. Currently, the freeware program cncjs [35] is used to send 

the G-code commands from a laptop to the crochet machine via an USB interface. Alternatively, the 

machine can receive the G-code via a memory card, similar to the typical use of a 3D printer. 

3 Results and Discussion 

In the following, the workflow of the design tool is presented using an exemplary application and the 

approach is discussed. The structure of the crocheted fabrics automatically produced with the crochet 

machine is also compared with that of conventionally hand-crocheted fabrics, based on models. 

3.1 Application of the tool 

Since the program checks the validity of operations and patterns during the design, the designer can 

focus solely on creating the desired structure of the fabric. This facilitates the swift creation of fabric even 

for inexperienced crochet designers. During the process, an error check can be performed at any time 

highlighting errors for the user. Similarly, a topologically correct 3D preview can be created at one’s 

convenience to be displayed with the freeware program TexMind Viewer. The CSV files of the models 

and the structure of the GUI can be saved for later use or rework. Once the design process is complete, 

the G-code can be generated automatically and used directly for production with the crochet machine. 

For this workflow, which is illustrated in Fig. 7, only the TexMind Viewer for the visualization of the 3D 

models and a program like cncjs for sending the G-codes are needed as external programs, both are 

available as freeware. 

The pseudocode shown in Fig. 7 represents G-code macros for stitch formation. Due to the course 

direction, a distinction is made between stitches going to the left and stitches going to the right. 
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According to the structure of the textile, the macros of the stitches are repeated. For an easy 

understanding of the necessary production steps of the designed textile, conventional crochet 

instructions in text form are also given in Fig. 7. As shown in the workflow, the user must manually 

crochet the first row consisting of the CHs onto the machine needles before machine production can 

begin. Thereby, the sixth CH is the T1 of the second course. 

 

 

Fig. 7 Workflow of using the developed design tool in an exemplary application. First, the fabric to be crocheted 

automatically is designed using the GUI and error checking, which ensures the manufacturability. Then a 3D model 

as preview of the crochet structure is generated and visualized with the TexMind Viewer. The G-code represented 

as pseudo code is generated automatically. Before the production starts, the first row consisting of CHs must be 

crocheted manually on the machine. 

Modeling of the maximal yarn tension is restricted by the minimal stitch height, which ensures that all 

possible models are free of intersecting yarn segments. As default for the stitch height, a YTF of 1 is 

used. This default is compared to higher stitches representing lower yarn tensions in Fig. 8. As can be 

seen, the vertical distances between the interlooping regions, which are not altered to prevent 

intersections, are increased for higher stitches. Also, the CH course’s height is not influenced because it 

is not produced by the machine. In the future, the exact relation between yarn tension during automated 

crocheting and resulting stitch height is to be investigated based on automatically crocheted samples 

with an improved crochet machine.  
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Fig. 8 Comparison of different stitch heights to enable modeling of different yarn tensions during manufacturing. 

The modeled fabric consists of all available stitch types and its structure is depicted in Fig. 4. Note that here the 

technical back is shown. (a) Lowest intersection free stitch height with yarn tension factor (YTF) of 1 used as de-

fault; (b) YTF of 1.25; (c) YTF of 1.5. 

The concept of the presented approach of the first design tool for a true crochet machine is, in principle, 

similar to commercial design tools for knitting (such as M1plus or KnitPaint) with pixel-based 

programming, preview and error detection. However, the range of functions is much more limited, which 

is in particular due to the prototype status of the crochet machine. According to the limitation of the 

machine to only produce flat fabrics, the approach differs from tools presented in scientific literature to 

design 3D textiles for manual circular crocheting [5,14,15]. Thus, in contrast to the literature, 3D objects 

cannot be processed to represent them with crocheted stitches and generate instructions on how to 

crochet them. The processing of two-dimensional shapes in order to automatically calculate the 

arrangement of crocheted stitches is only reasonable when the functionality of the prototype has been 

extended by increase and decrease stitches and their specific geometries are known. It is planned to 

extend the tool with this and generally according to further developments of the machine. Moreover, the 

tools from the literature [5,14,15] refer to crochet in the round and not to planar crochet, which is 

automated by the crochet machine. However, similar to the work of Guo et al. [14], a 3D model of the 

crocheted textile is also created. Similarities to Çapunaman et al. [15] are that the intrinsic characteristics 

of the production process are taken into account (here needle spacing and yarn tension in contrast to 

individual crochet technique) and instructions for production are generated. 

Compared to these crochet design tools from the literature [5,14,15], the goal of the tool presented here 

is not to design or efficiently construct 3D crocheted objects, but to enable the design of machine-made 

planar crocheted fabrics in an industrial context. The problem of the future application of a complex 

machine that automates a technology little known to the industry is solved by developing a stringent and 

extensible methodology for the design and control of the machine based on familiar tools. Without a 

dedicated design tool, the acceptance and application of the new machine is not given, because 

conventional tools and methods of driving textile machines cannot be applied here. The concise 

structure of the GUI with international crochet symbols and error checking allows users who are 

unfamiliar with crochet to easily develop a fabric to be crocheted by machine. 

With the modeling it is possible to rapidly generate a preview, which is advantageous in terms of design 

processes [21,36]. Especially regarding crocheted fabrics, which are rather unknown to potential 

designers in the technical field, this is of great advantage. In addition to visualization, the automatically 

generated models can also be used for further simulative investigations, e.g. by means of FEM [4,24,37]. 

This enables the model-based development of crocheted fabrics. 

Besides being specific to automated flat crocheting, the design tool is also specific to the presented 

prototype crochet machine because it is the only machine capable of producing planar crocheted fabrics, 

and due to general structures of machine-crocheted fabrics are so far unknown. The implemented error 

checking is partly related to general crochet rules but is also partly machine specific. However, the focus 

on individual stitches of the presented tool offers an approach for future expansion into a general, 

machine-independent design tool, which is the research trend regarding established knitting machines 

[17,18,20], since independent of the specific machine, the sequence in which the stitches are formed, 

given by the principles of crocheting, remains the same. Thus, when generating instructions for a specific 

machine, the stitches can be mapped simply to other text files with the appropriate machine commands. 

Therefore, instructions for other machines with a similar operation principle could be generated with the 
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same GUI and tool. Assuming that alternative crochet machines also form the stitches only from one 

side, the topological modeling can also be seen as generally valid, because the topology of the stitches, 

alongside the production sequence, are given by the principles of crochet. 

3.2 Model comparison of machine and manually crochet fabrics 

In analogy to single jersey weft knitting machines and plain fabrics [38], machine-crocheted fabrics have 

a technical face and a technical back. This is because, in stitch formation, yarn is always drawn from the 

back to the front (cf. Fig. 2), creating face loops. The structural difference to manually crocheted fabrics, 

where face loops are created on both sides by turning the textile after each course, is illustrated in Fig. 9. 

By considering the SCs in the fabric’s centers, the two sides of the machine-crocheted fabric (Fig. 9 a) 

and b)) can be clearly distinguished, whilst in the manually crocheted one (Fig. 9 d and e) they cannot be 

differentiated based on the SCs. 

In the side view of the manually crocheted fabric (Fig. 9 f), the alternating side, from which the loops are 

drawn to form the stitches, can be easily observed in the SLs (courses 2, 3 and 7), which are aligned 

almost perpendicular to the previous course. In the machine-crocheted fabric, the SLs are more 

stretched (cf. Fig. 9 c) due to the fabric take-off. Furthermore, regarding machine-crochet, the loops of 

the SCs in the second course are drawn through the first course of CHs differently than in manual 

crochet, which can be seen in the different shapes of the lowest courses of a) and d). These differences 

have to be considered in the design of automatically crocheted fabrics. Thus, modeling is also important 

for skilled crocheters to mind the deviations from manual crocheting. 

By the developed modeling, the topology of machine-crocheted fabrics is presented here for the first 

time. This illustration of the new textile structure accessible by the crochet machine is valuable not only 

for academic interest, but also necessary to demonstrate the potential of the novel crochet machine. 

 

Fig. 9 Comparison of the modeled structure of automatically (top) and manually (bottom) crocheted fabrics. The 

stitch structure of the fabric is depicted in Fig. 5. The starting point of the yarn path is indicated by a blue circle and 

the end point by a blue triangle. Modeling of the manually crocheted fabric is conducted with the program present-

ed in reference 4, and both models are visualized by the TexMind Viewer. (a) The technical face of the modeled 

machine-crocheted fabric; (b) the technical back of it; (c) the side view of the model; (d) one side of the modeled 

manually crocheted fabric; (e) the other side; (f) side view. 



268 
 

4 Conclusions 

For a future automated production of crocheted textiles, not only an appropriate real crochet machine is 

needed but also an easy-to-use design tool tailored to crochet. In this regard, the developed tool is 

specific to the introduced flat crochet machine currently under development, because this machine is so 

far the only one and existing tools are not applicable in this case.  

A planar fabric consisting of CHs, SLs, SCs and HDCs can be designed based on international crochet 

symbols, that can be arranged with a GUI. Automated error checking according to machine-specific and 

general crochet rules supports the user during the design process and ensures machine-producibility. In 

this regard, criteria for machine-producibility of crocheted textiles are defined. 

Topology-based models with spline-interpolated key points on the meso scale are automatically 

generated to facilitate the rapid design process and to illustrate the unique structure of machine-

crocheted fabrics. In contrast to manually crocheted fabrics, these exhibit a technical face as well as a 

technical back comparable to plain knitted fabrics, consequently they are slightly different in structure. In 

this context, the capabilities of a true crochet machine and the resulting stitch structures are presented 

for the first time. 

Furthermore, the chosen array-based data structure as output of the GUI represents the crochet stitches 

by strings arranged topologically to the crochet structure and is used to generate the G-code for 

automatic production with the crochet machine prototype based on macros of machine instructions for 

building stitches. This allows for flexible adjustments to future advancements of the machine. The stitch 

level computing also provides the capability of using the design tool for future alternative crochet 

machines by simply mapping the stitches to other macros.  

In the future, the crochet machine will be presented in more detail and automatically crocheted fabrics 

are planned to be compared with the models. Additionally, the relationship between yarn tension and 

stitch height is to be investigated so that the height of the stitches in the model can be calculated 

realistically. Also, it is planned to publish the code of the proposed design tool as open access after 

improving the documentation. Besides the benefits of using the design tool to construct crocheted 

samples in the context of ongoing machine development, the tool is intended in particular to demonstrate 

the possible structures of machine-crocheted fabrics and to aid potential users in accessing this new 

type of textile technology. 
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Supplementary materials 
 
Python-based code for the error checking algorithm 
 
# GUI_Array is an array based on the proposed data structure, 

# storing the stitches and their topological information, for example as seen in Fig. 3: 

GUI_Array = [['sl', 'sl', 'sl', 'sl', 't1'], 

             ['t1', 'sc', 'sc', 'sc', 'sc'], 

             ['sc', 'sc', 'sc', 'sc', 't1'], 

             ['t1', 'sc', 'sc', 'sc', 'sc'], 

             ['sl', 'sl', 'sl', 'sl', 't1'], 

             ['flo', 'sl', 'sl', 'sl', 'sl'], 

             ['void', 'ch', 'ch', 'ch', 'ch']] 

def errorTest(GUI_Array): 

    # List of found errors 

    ErrorList = [] 

    # The number of rows in the array 

    NumOfRows = len(GUI_Array) 

    # List of line lengths 

    LengthList = [] 

    # List of found transitions 

    TransitionList = [] 

    # Fabric start / end indices 

    FabricStart = -1 

    FabricEnd = -1 

    OldFabricStart = -1 

    OldFabricEnd = -1 

    # Begin iterating over the GUI_Array in one-step increments, starting at the top row, 

    # indices i and j are illustrated in Fig. 3 in relation to the crochet pattern 

    for i in range(0, NumOfRows, 1): 

        # Found transitions per line 

        TransitionLineList = [] 

        # Old start / end for checking for stitches before the first found transition 

        OldFabricStart = FabricStart 

        OldFabricEnd = FabricEnd 

        FabricStart = -1 

        FabricEnd = -1 

        # List of found voids in the fabric 

        VoidList = [] 

        # List of potential voids in the fabric 

        PotentialVoidList = [] 

        # Iterate over the elements in the line 

        for j in range(0, len(GUI_Array[i]), 1): 

            # Is the selected element a valid stitch? 

            if GUI_Array[i][j] != 'void': 

                if FabricStart < 0: 

                    FabricStart = j 

                # Satisfying constraint f) by checking for empty fields between fabric start 

                # and fabric end within the line: 

                # If a valid fabric end has been found 

                # the potential void candidates become actual voids 

                if FabricEnd < j: 

                    FabricEnd = j 

                    VoidList += PotentialVoidList 

                    PotentialVoidList = [] 

                # Satisfying constraint e): 

                # Check if a stitch has a parent stitch to attach to, ignore the last row 

                if i < NumOfRows-1: 

                    # Is the stitch not the first-lay-over (flo)? 

                    if GUI_Array[i][j] != 'flo': 

                        # Does the stitch have a parent stitch to connect to? 

                        if GUI_Array[i+1][j] == 'void': 

                            ErrorList.append((i+1, j, "Missing parent stitch")) 

                    # flo found 

                    else: 

                        # Satisfying constraint b): 

                        # Check if there is a parent stitch for the flo 

                        if GUI_Array[i+1][j] != 'void': 

                            ErrorList.append((i+1, j, "flo cannot have parent stitch")) 
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                if IsTransition(GUI_Array[i][j]): 

                    TransitionLineList.append((i, j)) 

            # The element is unset / there is no stitch 

            else: 

                # Satisfying constraint f): 

                # If a fabric start point has been found, 

                # every void after it is highlighted as a potential void candidate 

                if FabricStart > -1: 

                    PotentialVoidList.append(j) 

        # After finishing iteration of one line: 

        # Calculate and save the line length, the elements between fabric start and end, 

        # regardless of whether they are empty or not 

        LineLength = FabricEnd-FabricStart+1 

        LengthList.append(LineLength) 

        # Save the found transitions 

        TransitionList.append(TransitionLineList) 

        # For every found void in the fabric throw an error 

        for j in VoidList: 

            ErrorList.append((i, j, "Missing stitch in fabric")) 

        # Satisfying constraint c) by calculating the correct transition positions, 

        # this ensures the correct crochet direction: 

        # Scan the previous line, if there is one, to check for errors with transitions 

        if i > 0: 

            # Note: This function checks where the transition should be in this row, 

            # not where a potentially misplaced transition is at 

            TransitionLeftOrRight = checkTransitionSide(i-1) 

            # Fabric start or end index used to determine the transition position 

            FSE = None 

            # The transition is on the left, 

            # the fabric start index can be used to determine the transition position, 

            # but might need to be adjusted 

            if TransitionLeftOrRight == 'left': 

                # If current row index is not in the last row 

                if i < NumOfRows-1: 

                    FSE = FabricStart 

                else: 

                    # Last row and a void below flo 

                    if FabricStart > 0: 

                        # flo has a void as parent stitch causing the fabric start to shift 

                        FSE = FabricStart-1 

                    # Last row and no void under the flo (error), the FSE has to be adjusted 

                    else: 

                        FSE = 0 

            # The transition is on the right, 

            # the fabric end index can be used to determine the transition position 

            else: 

                FSE = FabricEnd 

            # The position, above the current row, where the transition should be at 

            SelectedStitch = GUI_Array[i-1][FSE][0] 

            # Check if there are obsolete stitches before the transition position 

            ErrorStart = None 

            ErrorEnd = None 

            if TransitionLeftOrRight == 'left': 

                ErrorStart = OldFabricStart 

                ErrorEnd = FSE 

            else: 

                # Note: We have to adapt the index with '+1', 

                # due to range(x) not counting the last element 

                ErrorStart = FSE+1 

                ErrorEnd = OldFabricEnd+1 

            # Satisfying constraint g): 

            # Iterate in one-step increments from the start of the obsolete stitches, 

            # throw an error for each field if it is not a 'void' 

            for n in range(ErrorStart, ErrorEnd, 1): 

                # Is there a stitch before the transition? 

                if GUI_Array[i-1][n][0] != 'void': 

                    ErrorList.append((i-1, n, "Stitch before transition position")) 

            # Is the stitch at the transition’s position an actual transition? 

            if IsTransition(SelectedStitch): 

                # Special case for the last row (first CH course), 

                # since the transition that should be found is the flo 

                if i == NumOfRows-1: 

                    if SelectedStitch != 'flo': 

                        ErrorList.append((i-1, FSE, "Missing flo")) 

                # If not in the last row 

                else: 

                    # The parent stitch in the 'i'-row the transition connects to 

                    Parent = GUI_Array[i][FSE][0] 

                    # The target stitch in the 'i-1'-row the transition connects to 

                    Target = None 

                    if TransitionLeftOrRight == 'left': 
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                        # The transition is on the left, 

                        # so the stitch following the transition is on the right ('+1') 

                        Target = GUI_Array[i-1][FSE+1][0] 

                    else: 

                        # The transition is on the right, 

                        # so the stitch following the transition is on the left ('-1') 

                        Target = GUI_Array[i-1][FSE-1][0] 

                    # Get the correct transition type given parent, target and direction 

                    Transition = getTransition(Parent, Target, TransitionLeftOrRight) 

                    # Is the selected stitch to the right transition type? 

                    if SelectedStitch != Transition: 

                        ErrorList.append((i-1, FSE, "Wrong transition at position")) 

            # No transition was found, where there should be one 

            else: 

                ErrorList.append((i-1, FSE, "Missing transition at position")) 

            # Check if more than one transition was found in the row 

            TransitionFound = False 

            for t in TransitionList[i-1]: 

                # Is the selected transition the correct one with matching indices? 

                if (not TransitionFound) and t[0] == i-1 and t[1] == FSE: 

                    TransitionFound = True 

                # Obsolete transition found 

                else: 

                    ErrorList.append((t[0], t[1], "Obsolete transition at position")) 

    # The length of the last row / CH course and one additional void field for the flo 

    CH_LineLength = LengthList[-1]+1 

    # Satisfying constraint d): 

    # Check every line length, ignore the last row (':-1') as it is the fabric start 

    for index, LineLength in enumerate(LengthList[:-1]): 

        # Is the row length longer than the fabric start? 

        if LineLength > CH_LineLength: 

            ErrorList.append((index, 0, "Line longer than fabric start")) 

        # Is the row length shorter than the fabric start? 

        elif LineLength < CH_LineLength: 

            ErrorList.append((index, 0, "Line shorter than fabric start")) 

    # Notify the GUI for every error that has been found 

    for Error in ErrorList: 

        NotifyGUI(Error) 

    return ErrorList 

 


