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Self-regenerating, polymer-based textiles emulate living 
organisms’ ability to heal broken skin and other lesser injuries. To 
achieve this effect, either intrinsic or extrinsic methods of having 
polymeric compounds mend these damages can be employed. 
Depending on the method used, the handling and results of the 
self-regenerating effect differ. This allows for different areas of 
application. The focus of this paper is to discuss some of these 
potential textile applications as well as related research and 
developments in the area of self-healing materials. 
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1 Introduction 

With the advancement of technical textiles, new possibilities in the field of textile research arise. One 

such possibility is self-healing materials. Mimicking a living organism’s ability to mend injuries it sustains, 

these fabrics, too, are made to restore a damaged area’s integrity without further interference [1]. On a 

very literal level, the self-regenerating polymer compounds that serve as the basis for self-healing 

tissues can be used, for example, to heal chronic skin wounds [2]. The use of polymers with these 

properties is not limited to textiles, but can also be used as coatings, for example, to repel water etc. [3]. 

The materials such as metals/alloys, plastics/polymers, paints/coatings, or ceramics/concrete involve 

self-healing mechanisms such as release of healing agents or reversible crosslinking for the 

development of self-healing materials [4-8]. In addition, technologies such as electrohydrodynamics, 

shape memory effect or migration of nanoparticles and co-deposition also play a major role in the 

development of self-healing strategies [4,5,9,10]. Textiles, ranging from linear textile structures such as 

fiber yarns to textile structures such as woven, knitted, braided, stitch-bonded, nonwoven or tubular 

https://creativecommons.org/licenses/
https://orcid.org/0000-0002-1822-7954


28 
 

fabrics etc. with self-healing properties are important for extending the product life cycle of the defined 

semi-finished products and products on the one hand and for sustainability aspects in order to protect 

the environment on the other hand [11-14]. 

In this review, the mechanisms underlying self-healing principles are discussed. The main part of this 

review focuses on different application areas for self-regenerating polymers. The emphasis is on textile-

related applications, although brief excursions into non-textile areas may also be of interest. In addition, 

discussion of potential applications is provided, particularly in the fields of aerospace and protective 

clothing. 

2 Functionality and classification 

Self-healing is known for living organisms and plays a great role in preservation of life as well as its 

prolongation [15]. Inspired by nature, researchers have come up with the idea of self-healing materials to 

extend the lifetime of synthetic materials that are susceptible to damage, and at the same time reduce 

the environmental impact of synthetic materials [16-18]. Self-healing materials are material systems or 

substances that can partially or completely recover from mechanical damage and regain their original 

properties. The self-healing of a material is the ability to restore damage automatically and 

autonomously. The terms such as self-repair, autonomous healing or autonomous repair are used for 

this purpose. In order to induce self-healing properties of the artificial materials, external triggers are 

necessary to generate the self-healing effect [19]. 

Self-healing materials can be categorized into two different methods – intrinsic and extrinsic as well as 

autonomous and non-autonomous [20]. Fig. 1 shows the classification of self-healing mechanisms [21-

23].  

 

Fig. 1 Classification of self-healing materials. 

Extrinsic self-healing materials are based on the encapsulation of a healing agent that is integrated into 

polymer matrix [24-26]. Upon damage, the encapsulated healing agent is released and self-healing is 

initiated [27]. In contrast, intrinsic self-healing materials contain specific reversible chemical bonds that 

allow multiple healing steps to occur at the same site upon damage, and the self-healing process takes 

place [28,29]. These bonds include, for example, the Diels-Alder reaction [30], radical-based systems 

[31], supramolecular interactions [32,33], ionic interactions [34], metal-ligand interactions [35] etc. Some 

examples of the extrinsic and intrinsic self-healing material methods are shown in Fig. 2. 
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(a) (b) 

Fig. 2 (a) Extrinsic and (b) intrinsic self-healing material methods.  

2.1 Extrinsic methods 

Extrinsic self-healing materials always work with a healing agent and a catalyst that is stored separately 

from the matrix. There are three different methods of this self-healing technique in the market. The self-

healing mechanism of the hollow tube and microcapsules is shown schematically in Fig. 3. 

  

(a) (b) 

Fig. 3 Scheme of (a) the hollow tube and (b) the microcapsules’ self-healing mechanism 

The first method is microvascular-based self-healing systems, which are very similar to the hollow tube 

approach (see Fig. 3a). Said methods have a constant feeding system and therefore the capacity to 

repair larger or multiple damages. The next method is microcapsule-based self-healing (see Fig. 3b). 

Microcapsule-based techniques have the catalyst and the healing agent already embedded in the matrix 

and constant feeding of those materials is therefore not possible. Only smaller damages can be healed 

that way. The best-known types of self-healing materials that use microcapsules are microcapsule-

catalyst-based self-healing, dual/multi-capsule-based self-healing, microcapsule-latent functionality 

system based self-healing and self-healing using the processing method of capsule catalysts [36]. In the 

study by Xiang et al, isocyanate prepolymer microcapsules with self-healing properties were prepared. 

Isocyanate prepolymer for self-healing protective coatings served as the core material. In addition, a 

commercial polyurethane hardener (Bayer L-75) and 1,4-butanediol (BDO) as a chain extender in an 

emulsion solution were used for interfacial polymerization. It was found that addition of gum arabic (GA) 

reduced the adhesion phenomenon and improved microcapsule surface appearance by making them 

smoother [37]. Fig. 4 shows the scheme of microencapsulation preparation (see Fig. 4a) and self-healing 

mechanism of isocyanate prepolymer microcapsules (see Fig. 4b). When damage occurs in the coating, 

embedded microcapsules will release the isocyanate prepolymer after breakage, thus repairing the 

cracked area. 
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Fig. 4 Scheme of production of the microcapsules (a); Self-healing mechanism of isocyanate prepolymer 

microcapsules (b). Gum arabic (GA), butyl acetate (BA), polyurethane (PU), oil-water system (O/W). Adapted from 

[37], originally published under a CC-BY 4.0 license. 

All extrinsic self-healing systems can achieve the virgin properties of the material after damage. When 

damage occurs, a trigger reaction takes place and the healing agent, which is inside the matrix or 

encapsulated and behaves as a catalyst, interacts and initiates a healing process. The newest method of 

extrinsic self-healing is a system that uses mesoporous networks. This microvascular method can be 

more easily explained as an optimized solution of the hollow tube approach. The hollow tubes are 

integrated into the matrix and look similar to veins in the human body. A constant feeding of healing 

agent is possible and the material can be repaired multiple times [36]. 

2.2 Intrinsic methods 

Materials that heal through intrinsic systems can inherently restore their integrity. By comparison, they 

are not as autonomous as most extrinsic self-healing methods and normally need an external trigger to 

start the healing process [38,39]. These methods work with the individually defined properties of the 

materials. They can work with the properties and behaviors of the chemical and physical bonds or their 

behavior when getting in contact with heat or water. Intrinsic self-healing has three well-known systems. 

The first system is based on reversible reactions. The most widely used reactions are Diels-Alder and 

retro-Diels-Alder. The next technique is based on ionomers. The most commonly used reactions of this 

technique are thermoreversible and physical interactions. Supramolecular-based systems are the last 

intrinsic method [40]. These systems function like metal coordination and/or hydrogen bonding [36]. 

Fig. 5 shows a simple, water-triggered self-healing coating suitable for various substrates by 

coalescence of the precipitated hydrogen-bonded complex of tannic acid (TA) and polyethylene glycol 

(PEG) in aqueous media [41,42]. As schematically shown in Fig. 5, formed assemblies are released 

quickly and combined through hydrogen bonds on the lower substrate to form a soft coating, which is 

able to repeatedly repair small cracks in the micrometer range [41]. 
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Fig. 5 Schematic representation of the formation of TA-PEG hydrogen-bonded complexes and the fabrication of 

the coating. Reprinted from [41], originally published under a CC-BY 4.0 license. 

2.3 Levels of Autonomy 

Various classifications of self-healing materials have already been undertaken [43]. Some are based on 

matrix materials (organic and inorganic) or the need for an external stimulus (autonomous or non-

autonomous). Others are classified based on the underlying chemistry of the healing such as extrinsic or 

intrinsic or the type of healing agent such as metals and alloys, shape memory alloys, chemical catalysts 

and monomers or bacteria [43-47]. 

The degree of autonomy can be sorted into four different categories: increased durability, assisted 

healing, semi-autonomous healing and fully autonomous healing [48] (cf. Fig. 6).  

 

Fig. 6. Levels of autonomy. 

Increased durability shows the lowest degree of autonomy. This level of autonomy will be made before 

the actual use of the product. The lifecycle will be prolonged through different methods, which are the 

individualization of the materials, the designs, and production steps [49,50]. The only aspect taken into 

consideration is the  re aration and  roduction of the  roduct.  he materials’  ro erties do not change 

during the use of the product. No healing processes will take place and therefore no trigger response is 

needed. An example of increased durability is creating radiation-resistant metals by irradiation [48]. The 

next level of autonomy is assisted healing. It has the second-lowest degree of autonomy. On this level, a 

healing process is able to take place; therefore, a trigger response is needed. It uses an external trigger, 

which can for example be heat, radiation, or pressure [51-53]. Furthermore, a material or energy flow is 

needed to initiate a healing of the product [48]. Semi-autonomous healing has the second highest 

degree of autonomy. A healing process, as in assisted healing, will take place and therefore a trigger 

response is needed. The difference to assisted healing is that the trigger response is based on 

environmental factors, like for example heat (e.g. on a hot summer’s day) or water [48]. 

The category with the highest degree of autonomy is fully autonomous healing. A healing process also 

takes place during the use, as it does with semi-autonomous healing or assisted healing. In this 

category, the trigger response that starts the healing process comes from the damage itself. Possible 
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techniques to achieve fully autonomous healing are the already named vascular-based self-healing 

methods or microcapsule-based self-healing [48]. 

3 Applications of self-healing materials 

Based on the principles of operation described above, the following section describes applications for 

self-healing textiles that are already available on the market or in research. The applications are divided 

into industrial applications, using aerospace as an example, and applications from the clothing industry. 

3.1 Aerospace industry applications 

Fiber-reinforced polymer composites with metal alloys or fiber-reinforced ceramic composites with 

integrated self-healing techniques are used in components such as aircraft fuselages and engines in the 

aerospace industry or in coatings [54-56]. Several problems in the aerospace industry can be solved by 

the mechanical, physical and chemical properties of self-regenerating systems. Spacecraft are typically 

coated with advanced polymer composites. They still sustain damages due to harsh environmental 

conditions like, for example, radiation, atomic oxygen, or collisions with space debris [57]. 

Modern aircraft use fiber-reinforced polymer composites for thermo-structural aerospace applications 

[58]. Currently used fiber-reinforced composites are susceptible to impact damage, and to remedy this 

deficiency, damage analysis methods based on the finite element (FE) method are used to predict the 

origin and development of damage as well as the load-bearing capacity [59]. Furthermore, they require 

further maintenance, as structural damage and integrity issues are difficult to detect. These materials 

have a very high application potential in terms of the use of hollow glass fiber epoxy composites. Hollow 

fiber reinforced composites have low weight and high mechanical performance and offer potential as 

encapsulation materials for self-healing, optical applications and good mechanical properties [60]. They 

have a strong recovery of up to 47% after healing damages from a three-point-bend impact stress and a 

strength recovery of about 97%. In addition to this, research on the preparation of ionomeric polymers 

suggests they have great self-healing abilities and a high velocity resistance. This preparation of 

ionomeric polymers can be an optimized replacement of aluminum alloys [61]. 

3.1.1 Coatings 

The research on coatings of aerostructure plays an essential role in the development of self-healing 

coatings.  hey can be used as a  rotection of the aerostructures’ wings, engine, cascade and many 

more parts from extreme conditions like heat or weather. Self-healing coatings can prevent dangerous 

errors from occurring due to damage. An example of these coatings is epoxy resin composites or self-

healing vanadia composites, which are a good alternative to chromate coatings [61]. In another study, 

synergistic mechanism of self-healing of cracks with oxidation-induced healing and precipitation-induced 

healing mechanism was developed in Al-modified SiC coating with nitrogen heat treatment in a high-

temperature oxidation environment [62]. A facile preparation of the highly transparent zwitterionic anti-

fog coating of poly (SBMA-co-IA) with self-healing and with antifouling properties by 

(methacryloyloxy)ethyldimethyl-(3-sulfopropyl) (SBMA) and itaconic acid (IA) was developed and 

investigated in another study [63]. A novel microencapsulated hydrophobic amine and micro-

encapsulated isocyanate in two-component structure for self-healing anti-corrosion coatings was 

developed and tested by Guo et al. Hydrophobic polyaspartic ester (PAE) and isophorone diisocyanate 

(IPDI) with melamine-formaldehyde (MF), which was microencapsulated by in-situ polymerization, 

served as the shell and self-healing tung oil (TO) dissolved in PAE served as the core material. True 

color confocal microscope (TCCM) micrographs confirmed the self-healing coating of two-component 

microcapsules and excellent self-repair performance at about 20 wt% content of two-component 

microcapsules in the epoxy coating [64]. Self-healing coating with and without self-healing microcapsules 

is shown in Fig. 7. 
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Fig. 7 TCCM images of scratched regions (a1-a3) control coating without self-healing microcapsules; (b1-b3) self-

healing coating containing self-healing microcapsules. Reprinted from [64], originally published under a CC-BY 4.0 

license. 

Fig. 7a1-a3 shows the sample with the control coating with a crack without the use of self-healing coating 

and sample 7b1-b3 with self-healing coating. It is clearly visible that the sample with the inclusion of 

microencapsulated IPDI and microencapsulated PAE/TO exhibits self-repair properties. The broken 

microcapsules release the repair agent and newly formed polyurea fills the microcrack. This self-healing 

coating with two-component microcapsules can be used in the anti-corrosion protection of metals as a 

quick repair for mechanical damages at early stages [64]. 

3.1.2 State of the art in aerostructures 

Several aerospace composites consisting of epoxy resins that contain Diels-Alder furan and maleimide 

moieties are able to self-regenerate after getting in contact with heat sources. In epoxy amine systems 

that are blended with furfuryl and maleimide functional groups in addition to a concentration of binding, 

thermo-reversible cross-linkers balance the thermoset and thermoplastic behaviors. The Diels-Alder 

(DA) reaction involves reversibility and the advent of self-repair technology, and thus is a simple and 

scalable toolbox. Due to these properties, the use of the DA reaction is being discussed in both 

academic and industrial research [65-68]. Thermosetting epoxy resins containing DA adducts in the 

epoxy precursor belong to self-healing polymers and form the class of smart materials from which 

intrinsically self-repairing materials are produced. One of the properties of DA adducts is their ability to 

be reversibly cleaved and reformed under suitable thermal conditions [69]. The study by Zolghadr et al. 

investigated novel self-healing DA polymers and semi-interpenetrating polymer networks (semi-IPNs). 

They found that the self-healing efficiencies reached about 80% and 95% for semi-IPN and DA 

polyadducts, respectively, in terms of flexural strength [70]. In the study by Ehrhardt et al., furan-

maleimide-Diels-Alder cycloadditions were investigated in polymer networks for ambient applications 

with self-healing property while maintaining mechanical robustness. The self-healing capacity of 

reversible polymer networks based on Diels-Alder cycloadditions were tested at temperatures 

between -40 °C and 85 °C and their potential application in photovoltaics as self-healing encapsulation 

material was confirmed [71]. 

Intrinsic self-healing technologies are particularly useful in high-risk or hot-spot regions where damage 

occurs more easily or frequently, and the new intrinsically self-healing materials with excellent 

mechanical properties are of great interest [72]. Said technologies can resist the extreme conditions 

these hot-spot regions have to undergo. Furthermore, a bulk material with a high healing efficiency was 

elaborated for the integration into fiber-reinforced polymer composites. The bulk material with the highest 

healing efficiency is a 20-pph bulk material derivative. Specialized polymers were developed, which are 

able to heal multiple times at very high temperatures. 
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3.2 Clothing industry 

Within the clothing industry several different fields of application are existing. Besides traditional 

fashionable clothing applications, in specific technically focused applications like protective clothing and 

workwear are already addressed with solutions for self-healing textiles. 

3.2.1 Protective clothing 

The use of these self-healing polymeric materials is also highly attractive for protective clothing. Possible 

applications include armor, ground vehicles, and tactical structures [73]. Protective clothing is critical to 

the health and safety of police officers, firefighters, space travelers, fishermen, factory workers, etc. who 

face hazards from the environment. Protective clothing in general necessitates long-living, resilient 

products, textile or otherwise. 

The durability of protective clothing can be improved by using self-regenerating polymer materials. An 

advantage here is that certain methods of applying self-healing materials, such as the solution process, 

are fairly simple. For example, textiles can incorporate a coating of microcapsules in a polymer matrix, 

which is the most practical extrinsic approach [74]. Using the solution as a coating, made from e.g. 

supramolecular polymers or rubber, also allows for the formation of a protective film across the treated 

surface. This is interesting in the context of fishermen’s clothing, marine installations and ships, which 

are constantly exposed to the corrosive nature of seawater and UV-rays [75]. 

One of the most long-standing fields of research when it comes to self-regenerating polymers is that of 

ballistic protective gear. This applies not only to worn armor along the lines of Kevlar vests, but also to 

vehicular protection. The influence of ion content on the ballistic self-healing of poly(ethylene-co-

methacrylic acid) copolymers and ionomers (EMAA) was investigated in the study by Kalista et al. These 

EMAA-copolymers demonstrate the ability to self-heal immediately after the impact of a ballistic projectile 

[76]. The integration of EMAA-copolymers can be promising for use in ballistic protection vests. In the 

study by Li and Gou, a multifunctional superamphiphobic cotton fabric with self-healing properties was 

produced by coating the surface of the cotton fabric with silica nanoparticles and further modifying it with 

1H,1H,2H,2H-perfluorooctyltrichlorosilane (FOTS). The investigations demonstrated that the 

superamphiphobic cotton fabric possessed good chemical and mechanical resistance and exhibited self-

cleaning and self-healing properties [77]. 

Both the need for technical staff to replace these damaged parts and the replacement itself are costly. 

Therefore, even ten to twenty years ago, self-regenerating materials were quite the prospective solution. 

For example, a patent application from 2011 describes an alternative approach to standard ceramic tile-

based armor with the help of self-regenerating polymers [78]. In this invention, a self-healing ballistic 

armor protection structure was developed as a shell made of laminated fabric material with outer and 

inner lamella. Ballistic fabric served as outer shell and inner lamella is made of soft, conformable and 

self-healing rubber compound. In addition, the shell is filled with ceramic particles embedded in a liquid 

[78]. The authors explain that the invention arose against the backdrop of ceramic planes needing 

replacement upon breaking, which produced high costs, as well as the high weight stress ceramic armor 

puts on vehicles [78]. 

The state of the art at the time cited the requirements for self-healing materials as follows  “(1) the 

cleaved material faces must be in close physical contact, (2) sufficient time must be allowed for 

completion of the self-healing reactions, and (3) environmental conditions must be amenable to the self-

healing chemistry” [79]. With the state of the art in 2006, the cracks in the material the self-healing fabric 

had mended [79] were already valuable enough a result.  

Especially coatings and the healing of punctures are attractive for protective clothing for use by police 

officers. The study found that their material could restore a scratch-damaged coating to its initial 

functionality after two seconds of healing. Puncture damages (hole or point defects) were found to only 

restore relatively localized damages, seeing as the experiment used intrinsic healing methods and 

therefore was not able to deliver more healing material to the damaged areas. Using vascular or 

encapsulation self-healing methods could circumvent this issue. However, the damages that could be 
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healed were restored after only one second by applying local heating. It is also suggested that patching 

the damaged area with new protein can help mend bigger holes [80]. 

3.2.2 Workwear 

Working in environments where the human body is exposed to chemicals can be very detrimental to 

health. In agriculture, for instance, workers spend a great portion of their working hours handling 

chemicals and pesticides [81]. The need for protective clothing not only has to fulfill the basic functions, 

but also consider other scenarios in which workers can be exposed to dangerous situations, e.g. their 

clothes tearing apart or the presence of small gaps in the fabric. In the search for a solution, many 

investigators have decided on the application of self-healing composites for working garments. 

A group of researchers from Pennsylvania State University worked on the development of a textile made 

from proteins together with a structure of polyelectrolyte multilayer (PEM) films. The protein is extracted 

from the squid ring teeth, and it presents valuable properties such as high-elastic modulus and healing 

properties as well [82]. The PEMs have been specially developed as a method to prevent bacterial 

adhesion to a material surface, and its manufacturing process mainly consists of the deposition of 

polyanions and polycations by coating the material through different methods [83]. These polyelectrolyte 

multilayers are already being used in the market, especially for medical textiles like cotton gauzes [84]. 

Both elements altogether reinforce protective functions against viruses or bacteria and the capability of 

self-regeneration in case of damage. Nevertheless, to ensure a high-protective performance, enzymes 

have been added to the te tile’s structure.  hese will neutralize the chemicals from the outside and 

prevent the human skin from getting into direct contact with them. 

Regarding the activation of the self-healing system, it works with the help of water. This element will 

stimulate the regeneration of components from the squid ring protein that is inside the textile. That way, 

new bonds are built and are completely tied up when the material is dried. An advantage of using this 

squid ring protein compared to other healing agents is the highly effective results, not just for 

regenerating the textile itself but also for preventing possible contact between pesticides or chemicals 

and the human skin. Moreover, apart from the great performance that it provides, the protein can be 

considered a more sustainable option. This technology of multilayer films coated with proteins and 

enzymes can be manufactured with conventional fibers such as cotton, wool, and linen. Therefore, it is 

very practical to apply it to different types of work garments. That way, the safety and health of people 

who are exposed to harsh conditions every day can be ensured. However, technologies with other 

approaches are also being developed in order to provide the healing fabric mechanism for different 

materials. This is the case with research focused on the manufacturing of worker gloves with high 

protective performance. The main healing composite is composed of methylvinyl silicone rubber 

containing hybrid molecules with an inorganic silsesquioxane, and the base fabric is made of cotton or 

polyamide fibers [85]. The results of several tests conclude that the textile shows great resistance to 

conditions such as penetration, abrasion, and puncture, which makes it very suitable to wear when 

working with hazardous chemicals. 

Just as the two different technologies previously described, many scientists are on their way to develop 

methods that ensure the best protective conditions when working in difficult environments. The focus on 

the manufacturing of efficiently healing fabrics is one solution with countless alternative approaches to it, 

and over the passage of time, the interest in discovering new materials with high-performance properties 

will increase, just as there will be more proposals for techniques. 

3.2.3 Fashionable clothing 

The fashion industry is one of the most polluting consumer industries, and fast fashion means that cheap 

clothing is produced at a fast pace and disposed of just as quickly – most often after one season or 

earlier [86]. Moreover, the fashion industry generates around 92 million tons of waste per year [87,88]. 

The most common reason for disposing of garments is holes or tears in the fabric [89]. Different 

approaches are being developed to establish sustainable fashion and to extend the lifecycle of textiles 
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and clothing. New approaches such as Zero Waste are established, which is intended to stop the 

unlimited pollution of the environment and involves social commitment of people in sustainability issues 

[90,91]. Consequently, self-healing fabrics can be considered as one way to avoid this problem by 

integrating its mechanism to everyday clothes such as T-shirts, jackets, jeans, hosiery, etc. 

The first option for self-healing garments appearing in the market was a windbreaker designed in 2017 

by the American apparel brand Imperial Motion that launched the outdoor jacket with its patented Nano 

Cure Tech (NCT) technology [92]. NCT is made from lightweight water-resistant nylon ripstop with 

resealing and repairing capabilities [93]. Ripstop is a woven structure that, thanks to the interlacing of 

threads in a crosshatch pattern, provides the fabric with a very high resistance against ripping and 

tearing [94], which improves the performance of the material under possible punctures. The mechanism 

behind this NCT material works because the interlaced threads are not broken when the fabric is 

perforated, only pushed apart (see Fig 8). Therefore, in order to repair the fabric, it is only necessary to 

rub the place in which the hole a  eared with one’s fingers.  m erial Motion developed a collection for 

outdoor apparel and accessories with this new technology, attracting not only customers but also 

different clothing manufacturers. 

 

Fig. 8 Schematic representation of the interwoven threads during perforation of the fabric, which are pressed apart 

at the stitching point. 

Consequently, the innovation for this new type of material can contribute to extending the lifecycle of 

garments, which will directly impact the supply chain of the fashion industry. If clothes can be mended 

easily, with a physical appearance as good as their original state, the need for buying new clothes will 

decrease. Less demand in the market means lower consumption of resources and fewer emissions into 

the environment. However, a major factor to consider is the quality level of the fabric once it has been 

repaired. It is important, especially in outdoor apparel, that the products can maintain their high 

performance capacity in order to provide efficient protection. In the case of water-repellent materials, the 

self-healing textiles can completely recover and maintain their hydrophobic behavior after suffering 

possible chemical and physical damage [95,96]. This occurs due to the presence of self-healing agents 

applied as coating layers to the textile, playing a key role in the development of self-regenerating 

materials. 

There are now several companies offering products with self-healing properties. For example, Swiss 

start-up CompPair develops in-situ repair solutions for composite structures that heal damage by using 

intelligent prepregs and additional thermal heating to wind turbine blades, buildings and ship hulls [97]. 

The start-up SAS Nanotechnology (USA) develops intelligent coating consisting of microcapsules with 

efficient self-healing technology for corrosion protection. The polymer-based microcapsules release 

corrosion protection additives due to chemical and mechanical triggers and provide self-healing effect 

against corrosion [98]. In contrast, the US-based start-up company Tandem Repeat has developed 

programmable textiles with self-healing coating [99]. Microcapsules are also used for a self-healing effect 

by the company Autonomic Materials (AMI) (USA) [100]. 
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4 Conclusions 

The development of self-healing materials has gained great importance as a new solution for technical 

textiles. Relevant features are the compatibility with different materials such as polymers and natural 

fibers [101] and the flexibility of manufacturing methods and healing activation mechanisms. The 

integration of other techniques, such as multilayer films or the use of different resources as healing 

agents, demonstrates the capacity to continue generating more materials with self-healing properties in 

the future. Their application already takes place in many markets, ranging from technical areas, such as 

aerospace and military applications, to the fashion retail market. Moreover, the sustainability aspect that 

characterizes them makes the self-healing materials an attractive future trend for many industries. 

However, it will remain a constant challenge to preserve the original properties of the basic material 

when coming up with a new approach. Some investigations mention a toughening effect in composites 

resulting from the introduction of healing microcapsules [101,102]. To what extent this is relevant will 

depend on the final application and the user. Nevertheless, the impact generated by this technology is 

increasing exponentially and is turning into an attractive option for many companies. 
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