Exemplarily view on selected fluorescence textile products


  • Boris Mahltig Faculty of Textile and Clothing Technology, Hochschule Niederrhein, Mönchengladbach, Germany https://orcid.org/0000-0002-2240-5581
  • Vanessa Ernst Faculty of Textile and Clothing Technology, Hochschule Niederrhein, Mönchengladbach, Germany
  • Lisa Schöder Faculty of Textile and Clothing Technology, Hochschule Niederrhein, Mönchengladbach, Germany




Fluorescent materials emit light of higher wavelength, in case of illumination with light exhibiting lower wavelength. In many commercial applications, fluorescent materials transfer non-visible ultraviolet (UV) light into visible light. By this an additional color effect and higher visibility is reached. One typical field for application of fluorescence dyes is the textile area. Here, fluorescent textile products are manifold used and offered, e.g. for brightening effects, light effects and UV protection. With this background, the aim of the current study is the investigation of typical commercially available textile products with fluorescent properties. For this, four different polyester fiber-based materials of different coloration and purpose are selected for investigation. Investigations are performed by illumination under different illumination arrangements with UV light and visible light. CIE-Lab measurements are done. Further, scanning electronic microscopy (SEM) and Fourier Transform infrared (FT-IR) spectroscopy are used. Light emission and excitation of the samples is recorded by fluorescence spectroscopy. 2D fluorescence spectroscopy is performed. The chemical composition of the investigated textile samples is determined by using electron dispersive spectroscopy (EDS). For all investigated commercial textile products, the light emission during illumination with UV light is extraordinary strong. The color appearance can be enhanced strongly by this fluorescence effect. Beside the absorption of UV light by the present fluorescence dyes, also the presence of titanium dioxide supports an UV protective property of the textile samples. Finally, it can be concluded that fluorescent fiber materials are well established products for advanced and functional textiles. These materials can be even found in cost effective and everyday consumer products.


Ding, W.; Sun, J.; Chen, G.; Zhou, L.; Wang, J.; Gu, X.; Wan, J.; Pu, X.; Tang, B.; Wang, Z. L. Stretchable multi-luminescent fibers with AIEgens. Journal of Materials Chemistry C 2019, 7, 10769-10776. DOI: https://doi.org/10.1039/C9TC03461G.

Baatout, K.; Saad, F.; Baffoun, A.; Mahltig, B.; Kreher, D.; Jaballah, N.; Majdoub, M. Luminescent cotton fibers coated with fluorescein dye for anti-counterfeiting applications. Materials Chemistry and Physics 2019, 234, 304-310. DOI: https://doi.org/10.1016/j.matchemphys.2019.06.007.

Saad, F.; Baffoun, A.; Mahltig, B.; Hamdaoui, M. Polyester Fabric with Fluorescent Properties Using Microwave Technology for Anti-Counterfeiting Applications. Journal of Fluorescence 2022, 32, 327-345. DOI: https://doi.org/10.1007/s10895-021-02845-7.

Dalponte, E.; Mahltig, B.; Breckenfelder, Luminous Textiles for UV-Protection and Light Effect Application. Book chapter. In: Textiles: Advances in Research and Applications; Mahltig, B. (Ed.), Nova Science Publishers Inc., New York, USA, 2018; pp. 167-182.

Jakubke, H.-D.; Jeschkeit, H. Concise Encyclopedia Chemistry, Walter de Gruyter, 1993.

Grancaric, A. M.; Tarbuk, A.; Botteri, L. Light conversion and scattering in UV protective textiles. AUTEX Research Journal 2014, 14, 247-258. DOI: https://doi.org/doi.org/10.2478/aut-2014-0025.

Mahltig, B.; Greiler, L.C.; Haase, H. Microwave assisted conversion of an amino acid into a fluorescent solution. Acta Chimica Slovenica 2018, 65, 865-874. DOI: https://doi.org/10.17344/acsi.2018.4513.

Vik, M.; Vikova, M.; Kasparova, M. Decay of Phosphorescent Warning Design on Textile Substrates. Applied Mechanics and Materials 2014, 440, 112-117. DOI: https://doi.org/10.4028/www.scientific.net/AMM.440.112.

Choudhury, A.K.R. Textile Preparation and Dyeing, Science Publishers, 2006.

Liu, M. O.; Lin, H. F.; Yang, M. C.; Lai, M. J.; Chang, C. C.; Liu, H. C.; Shiao, P.-L., Chen, I.-M. Chen, J. Y. Thermal and fluorescent properties of optical brighteners and their whitening effect for pelletization of cycloolefin copolymers. Materials Letters 2006, 60, 2132-2137. DOI: https://doi.org/10.1016/j.matlet.2005.12.112.

Luepong, K.; Punyacharoennon, P.; Sarakarnkosol, W. A Kinetic and Thermodynamic Study of CI Fluorescent Brightener 113 on Cotton. Prog. Color Colorants Coat. 2022, 15, 225-233.

Szuster, L.; Kazmierska, M.; Krol, I. Fluorescent Dyes Destined for Dyeing High-Visibility Polyester Textile Products. Fibres & Textiles in Eastern Europe 2004, 12, 70-75.

Stolarski, R. Fluorescent Naphthalimide Dyes for Polyester Fibres. Fibres & Textiles in Eastern Europe 2009, 17, 91-95.

Youm, K.; Kumar, S.; Koh, J. Synthesis and Spectral Properties of Fluorescent Phthalimidylhydrazone Disperse Dyes and their Application to Poly(ethylene terephthalate) Dyeing. Fibers and Polymers 2022, 23, 2667-2678. DOI: https://doi.org/10.1007/s12221-022-0150-2.

Miao, H.; Schüll, E.; Günther, K.; Mahltig, B. Microwave Assisted Preparation for the Realisation of Functional and Colored Textiles. Book chapter. In: Textiles: Advances in Research and Applications; Mahltig, B. (Ed.), Nova Science Publishers Inc., New York, USA, 2018; pp. 29-60.

Xiong, X.; Xu, Y.; Zheng, L.; Yan, J.; Zhao, H.; Zhang, J.; Sun, Y. Polyester Fabric’s Fluorescent Dyeing in Supercritical Carbon Dioxide and its Fluorescence Imaging. Journal of Fluorescence 2017, 27, 483-489. DOI: https://doi.org/10.1007/s10895-016-1975-0.

Liu, H.; Lu, M.; Pan, F.; Ning, X.; Ming, J. Influence of fluorescent dyes for dyeing of regenerated cellulose fabric. Textile Res. J. 2020, 90, 1385-1395. DOI: https://doi.org/10.1177/0040517519892915.

Marae, I.S.; Sharmoukh, W.; Bakhite, E.A.; Moustafa, O.S.; Abbady, M.S.; Emam, H.E. Durable fluorescent cotton textile by immobilization of unique tetrahydrothienoisoquinoline derivatives. Cellulose 2021, 28, 5937-5956. DOI: https://doi.org/10.1007/s10570-021-03871-1.

Lee, J.; Jun, H.; Kubota, Y.; Kim, T. Synthesis of red fluorescent dye with acid gas sensitive optical properties and fabrication of a washable and wearable textile sensor. Textile Res. J. 2021, 91, 2036-2052. DOI: https://doi.org/10.1177/0040517521994496.

Aysha, T.; El-Sedik, M.; El Megied, S. A.; Ibrahim, H.; Youssef, Y.; Hrdina, R. Synthesis, spectral study and application of solid state fluorescent reactive disperse dyes and their antibacterial activity. Arabian Journal of Chemistry 2019, 12, 225-235. DOI: http://dx.doi.org/10.1016/j.arabjc.2016.08.002.

Arbeitsschutz-Express GmbH (Leipheim, Germany). 2022. Company web page on Polyester-Warnweste, Retrieved December 19, 2022 from https://www.arbeitsschutz-express.de/de/polyester-warnweste-klasse-2-basic-gelb?number=10018885342377.

Mahltig, B.; Grethe, T. High-Performance and Functional Fiber Materials — A Review of Properties, Scanning Electron Microscopy SEM and Electron Dispersive Spectroscopy EDS. Textiles 2022, 2, 209-251. DOI: https://doi.org/10.3390/textiles2020012.

Christie, R. M. Colour Chemistry; Royal Society of Chemistry, 2001.

Wardman, R. H. An Introduction to Textile Coloration – Principle and Practice, John Wiley & Sons Ltd, 2018.

Lübbe, E. Farbempfindung, Farbbeschreibung und Farbmessung, Springer Vieweg, 2013.

Aysha, T.; Zain, M.; Arief, M.; Youssef, Y. Synthesis and spectral properties of new fluorescent hydrazone disperse dyes and their dyeing application on polyester fabrics. Heliyon 2019, 5, e02358. DOI: https://doi.org/10.1016/j.heliyon.2019.e02358.

Böttcher, H.; Mahltig, B.; Sarsour, J.; Stegmaier, T. Qualitative investigations of the photocatalytic dye destruction by TiO2-coated polyester fabrics. J. Sol-Gel Sci. Technol. 2010, 55, 177-185. DOI: https://doi.org/10.1007/s10971-010-2230-9.

Farzana, N. Fluorescent disperse dyes: Reflectance Spectra, relative strength and performance evaluation of coumarin class on polyester/cotton blended fabric. International Journal of Research in Engineering and Technology – IJRET 2005, 4, 488-494.

Mahltig, B.; Rabe, M.; Muth, M. Textiles, Dyeing, and Finishing. In Kirk-Othmer Encyclopedia of Chemical Technology, 2019, pp. 1–35. DOI: https://doi.org/10.1002/0471238961.0609140903011201.a01.pub2.

Stralin, I. N.; Wu, Q.; Pourrahimi, A. M.; Hedenqvist, M. S.; Olsson, R. T.; Andersson, R. L. Electrospinning of recycled PET to generate tough mesomorphic fibre membranes for smoke filtration. Journal of Materials Chemistry A 2015, 3, 1632-1640. DOI: https://doi.org/10.1039/C4TA06191H.

Mahltig, B. High-Performance Fibres – A Review of Properties and IR-Spectra. Tekstilec 2021, 64, 96-118. DOI: https://doi.org/10.14502/Tekstilec2021.64.96-118.

Hesse, M.; Meier, H.; Zeeh, B. Spectroscopic Methods in Organic Chemistry, Georg Thieme Verlag, 2008.

Günzler, H.; Gremlich, H.-U. IR Spectroscopy, WILEY-VCH Verlag, 2002.

2D fluorescence spectra of evaluated sample




How to Cite

Mahltig, B., Ernst, V., & Schöder, L. (2023). Exemplarily view on selected fluorescence textile products. Communications in Development and Assembling of Textile Products, 4(1), 61–69. https://doi.org/10.25367/cdatp.2023.4.p61-69



Peer-reviewed articles