Parametrized regression model and experimental validation for an effective spacer fabric compression
DOI:
https://doi.org/10.25367/cdatp.2025.6.p108-122Keywords:
3D warp knitted spacer fabrics, sewing parameters, compression properties, simulation, numerical modelling, regression analysisAbstract
Warp-knitted spacer fabrics are featured by a 3d integral structure consisting of two warp-knitted fabric layers, which are kept on distance by vertical threads. This structure enables the realization of several functions like mechanical cushioning, permeability for air and moisture, and thermal insulation. Due to these functions, spacer fabrics can be used as moisture and thermal-regulating functional components in various sewing products, whereby compression stability is essential for the functionalities mentioned above. These can also be influenced locally by stitching. A numerical tool is preferred to compute the mechanical properties in an accurate way, taking into account the varying sewing parameters. This study's objective is to extend the macroscopic material law for spacer fabrics through numerical analysis of experimental data. For this purpose, 3d samples stitched at varying intervals were tested by a compression test. A regression analysis was applied to predict the compressive stress for each structure. The research steps included representing and approximating the coefficients and potencies for the experimental curves as explicit functions of the distance between the stitch lines. An effective contact model for spacer fabrics with stitches was developed, which is to be expressed in the form of seam distance in terms of the effective compression of the spacer fabrics. Thus, in the future, it will be much easier to predict the effective properties for selected semi-analytical applications with such materials.
References
Bruer, S.M.; Powell, N.; Smith, G. Three-dimensionally Knit Spacer Fabrics – A Review of Production Techniques and Applications, Journal of Textile and Apparel Technology and Management, 2005, Vol. 4 (4), pp. 1-31.
Wollina, U.; Heide, M.; et al. Functional Textiles in Prevention of Chronic Wounds, Wounds Healing and Tissue Engineering, In: Elsner, P.; Hatch, K.; Wigger-Alberti, W. (eds): Textiles and Skin. Current Problems in Dermatology, Basel, Karger, 2003, pp. 82-97.
Chen, F.; Wang, J.; Gao, S.; Ning, X.; Yan, P.; Tian, M. An experimental study on the vibration behavior and the physical properties of weft-knitted spacer fabrics manufactured using flat knitting technology, Textile Research Journal, 2022, 004051752211249, DOI: 10.1177/00405175221124929.
Datta, M. K.; Behera, B. K.; Goyal, A. Prediction and analysis of compression behaviour of warp-knitted spacer fabric with cylindrical surface, Journal of Industrial Textiles, 2019, vol. 48, no. 9, pp. 1489–1504, DOI: 10.1177/1528083718769936.
Liu, Y.; Hu; H. An experimental study of compression behavior of warp-knitted spacer fabric. Journal of Engineered Fibers and Fabrics, 2014, 9(2), 155892501400900207.
Yu, S.; Liu, H.; Wu, S.; Ma, P. Numerical characterizations for compressive behaviors of warp-knitted spacer fabrics with multi-layers from simplified finite element model, Journal of Industrial Textiles, 2022, vol. 52, 1-22, DOI: 10.1177/15280837221112402.
Liu, Y.; Hu, H. Compression property and air permeability of weft‐knitted spacer fabrics, Journal of the Textile Institute, 2011, vol. 102, no. 4, pp. 366–372, DOI: 10.1080/00405001003771200.
Yu, A.; Sukigara, S.; Takeuchi, S. Effect of inlaid elastic yarns and inlay pattern on physical properties and compression behaviour of weft-knitted spacer fabric”, Journal of Industrial Textiles, 2022, 51(2_suppl), 2688S-2708S.
Tröltzsch, J., Schäfer, K.; Niedziela, D.; Ireka, I.; Steiner, K.; Kroll, L.: Simulation of RIM-process for polyurethane foam expansion in fiber reinforced sandwich structures, 2017, Procedia CIRP Volume 66, pages 62-67; https://doi.org/10.1016/j.procir.2017.03.285.
Yu, L. et al. Finite element simulation and experimental verification of quasi-static compression properties for 3D spacer fabric/hollow microspheres reinforced three phase composites, Mater. Res. Express, 2021, vol. 8, no. 5, p. 55305, DOI: 10.1088/2053-1591/ac0265.
Yu, S.; Dong, M; Jiang, G.; Ma, P. Compressive characteristics of warp-knitted spacer fabrics with multi-layers”. Composite Structures, 2021, 256, 113016.
Patent specification DE19903070A1. Spaced knitted vehicle seat upholstery fabric has one layer with high air permeability and layer with reduced air permeability incorporating electrically conductive threads for heating. 2000.
anonymus, Mattresses, seating and lying elements for optimum thermal regulation. Firmenschrift cetex-Institut für Textil- und Verarbeitungsmaschinen gemeinnützige GmbH. December 2010, https://www.yumpu.com/en/document/read/7154317/matratzen-sitz-und-liegeelemente-fur-optimale-thermoregulation (15.05.2025).
. Vassiliadis, S.; Kallivretaki, A.; Psilla, N.; Provatidis, Ch.; Mecit, D.; Roye, A. Numerical Modelling of the Compressional Behaviour of Warp-knitted Spacer Fabrics., Fibres & Textiles in Eastern Europe, 2009, pp. 56–61.
Christina Eisenbarth, Walter Haase, Lucio Blandini, Werner Sobek: Potentials of hydroactive lightweight façades for urban climate resilience, 2022, https://doi.org/10.1002/cend.202200003
Dallmann, A.; Christian, F.; Hoffmann, G.; Cherif, C. Development of spacer warp knitted thermoelectric generators. In: Smart Materials and Structures 30, 2021, Nr. 3, S. 35034.
anonymus. Grauwasseraufbereitung mit 3D-Textilien, May 2024, https://gwf-wasser.de/forschung-und-entwicklung/grauwasseraufbereitung-mit-3d-textilien (access 15.05.2025).
Rödel, H.: Entwicklung textiler Systeme zur Prävention und Eliminierung von biologischen Kontaminationen in Trinkwassern und anderen flüssigkeitsführenden Systemen (Development of textile systems for the prevention and elimination of biological contamination in drinking water and other liquid-carrying systems). Final Research Report BMBF FKZ 02WT0669, TU Dresden, Institute of Textile Machinery and High Performance Material Technology, 2008.
Liu, Y.; Hu, H.; Zhao, L.; Long, H. Compression behavior of warp-knitted spacer fabrics for cushioning applications, Textile Research Journal, 2012, vol. 82, no. 1, pp. 11–20, DOI: 10.1177/0040517511416283.
Schwager, C.; Peiner, C.; Bettermann, I.; Gries, Th. Development and standardization of testing equipment and methods for spacer fabrics, Applied Composite Materials, 2022, 29(1), 325-341.
Renkens, W.; Kyosev, Y. Geometry modelling of warp knitted fabrics with 3D form, Textile Research Journal, 2011, vol. 81, no. 4, pp. 437–443, DOI: 10.1177/0040517510385171.
Kyosev, Y., Renkens, W. 3D-CAD für die Gestaltung von gewirkten Strukturen, 11. Chemnitzer Textiltagung, 24-25 October 2007, pp. 110-117.
Kyosev, Y, Renkens, W. 3D Modelling of warp knitted structures under consideration of the mechanical properties of the yarns. Second World Conference on 3d Fabrics and their Applications, 6-7 April, 2009, Greenville, South Carolina, USA.
Kyosev, Y., Topology-Based Modeling of Textile Structures and Their Joint Assemblies, Springer, 2019. ISBN 978-3-030-02541-0.
Zhang, Y.; Hu, H.; Kyosev, Y.; Liu, Y. Finite element modeling of 3D spacer fabric: effect of the geometric variation and amount of spacer yarns, Composite Structures, Volume 236, March 2020, 111846, https://doi.org/10.1016/j.compstruct.2019.111846.
Helbig, F. U. Druckelastische 3D-Gewirke: Gestaltungsmerkmale und mechanische Eigenschaften druckelastischer Abstandsgewirke. Saarbrücken: Südwestdeutscher Verlag für Hochschulschriften, 2011. http://d-nb.info/98092443X/34.
Hou, X.; Hu, H.; Liu, Y.; Silberschmidt, V. Nonlinear Compression Behavior of Warp-Knitted Spacer Fabric: Effect of Sandwich Structure,” CMC, 2011, no. 23, pp. 119–134.
Liu, Y.; Hu, H. Finite element analysis of compression behaviour of 3D spacer fabric structure,” International Journal of Mechanical Sciences, 2015, 94-95, pp. 244–259, DOI: 10.1016/j.ijmecsci.2015.02.020.
Zhang, Y.; Hu, H.; Kyosev, Y.; Liu, Y. Finite element modeling of 3D spacer fabric: Effect of the geometric variation and amount of spacer yarns, Composite Structures, 2020, vol. 236, p. 111846.
TexMath Software Tool for Simulation of Textiles, https://www.itwm.fraunhofer.de/en/departments/sms/products-services/texmath.html (access 10.07.2025).
Kyosev, Y. Warp Knitted Fabrics Construction (1st ed.). CRC Press. 2019. https://doi.org/10.1201/9780429094699.
Velosa, J. C.; Rana, S.; Fangueiro, R.; Marques, S. Predicting Mechanical behavior of novel sandwich composite panels based on 3D warp knitted spacer fabrics using finite element method (FEM), In ECCM 15 – 15th European Conference on Composites Materials, 2012, 24-28 June, Italy, Venice.
Orlik, J.; Neusius, D.; Steiner, K.; Krier, M. On the ultimate strength of heterogeneous slender structures based on multi-scale stress decomposition” International Journal of Engineering Science, 2024, Volume 195, 104010, ISSN 0020-7225. https://doi.org/10.1016/j.ijengsci.2023.104010.
Orlik, J.; Krier, M.; Neusius, D.; Pietsch, K.; Sivak, O.; Steiner, K. Recent efforts in modeling and simulation of textiles”, Textiles, 2021, 1(2), 322-336. https://doi.org/10.3390/textiles1020016.
Orlik, J.; Pietsch, K.; Fassbender, A.; Sivak, O.; Steiner, K. Simulation and Experimental Validation of Spacer Fabrics Based on their Structure and Yarn’s Properties, Applied Composites Materials 2018, 25, 709-724. (first online 03.08.2018). https://doi.org/10.1007/s10443-018-9726-9.
Schmidt, A.-M.; Pietsch, K.; Kyosev, Y.: Compression behavior of sectioned spacer fabrics by sewing seams: Experimental and numerical investigation. Textile Research Journal. 2025; https://doi.org/10.1177/00405175241302802 (Open Access).
Krier, M.; Orlik, J.; Pietsch, K.: Simulation on the Yarn Level and Experimental Validation of Spacer Fabrics Compression by a Rigid Punch. Influence of Seams in the Spacer Fabric. Acta Mechanica et Automatica 2025, Vol. 1 no 19, DOI: https://doi.org/10.2478/ama-2025-0009.
Asayesh, A.; Ehsanpour, S.; Latifi, M. Prototyping and analyzing physical properties of Weft knitted spacer fabrics as a substitute for wound dressings. The Journal of The Textile Institute, 2019.110, 9, 1246–1256.
Ruxton, G. D. The unequal variance t-test is an underused alternative to Student's t-test and the Mann–Whitney U test. Behavioral Ecology, 17(4), 2006, p. 688–690. https://doi.org/10.1093/beheco/ark016.

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Nataliya Sadretdinova, Kathrin Pietsch, Julia Orlik

This work is licensed under a Creative Commons Attribution 4.0 International License.