Evaluation of chitosan based pretreatment for cotton and linen dyeing with direct dyes and reactive dyes

Authors

  • Mohammad Toufiqul Hoque Faculty of Textile and Clothing Technology, Hochschule Niederrhein University of Applied Sciences, Mönchengladbach, Germany https://orcid.org/0000-0001-9969-0790
  • Tian Benrui Faculty of Textile and Clothing Technology, Hochschule Niederrhein University of Applied Sciences, Mönchengladbach, Germany
  • Thomas Grethe Faculty of Textile and Clothing Technology, Hochschule Niederrhein University of Applied Sciences, Mönchengladbach, Germany https://orcid.org/0000-0001-9625-327X
  • Boris Mahltig Faculty of Textile and Clothing Technology, Hochschule Niederrhein University of Applied Sciences, Mönchengladbach, Germany https://orcid.org/0000-0002-2240-5581

DOI:

https://doi.org/10.25367/cdatp.2023.4.p187-200

Keywords:

Cotton, linen, chitosan, direct dyes, reactive dyes, rubbing fastness

Abstract

Cellulosic materials like cotton and linen are excellent textile substrates for dyeing with reactive and direct dyes. Due to their cellulosic nature, cotton and linen exhibit good affinity towards direct and reactive dyes. This good affinity is the reason for good washing and rubbing fastness. Chitosan is a bio-based polymer gained by the deacetylation of chitin. In contrast to cellulose, chitosan exhibits also amino functional groups. The purpose of this paper is to evaluate if a chitosan based pretreatment of cotton and linen can lead to different dyeing properties. After different chitosan based pretreatments, the color properties are determined by CIEL*a*b* indices. The rubbing fastness in dry and wet conditions is measured. Even if in the actual study no positive effects were determined by pretreatment of chitosan, the determined results could be utilized in future research to develop other functional treatments of cotton and linen materials with implemented chitosan.

References

Koszewska, M. Circular Economy – Challenges for the textile and clothing industry. AUTEX Research Journal 2018, 18, 337-347. DOI: 10.1515/aut-2018-0023.

Juanga-Labyen, J.P., Labayen, I.V., Yuan, Q. A Review on Textile Recycling Practices and Challenges. Textiles 2022, 2, 174-188. DOI: 10.3390/textiles2010010.

Choudhury, A. K. R. Chapter 1 – Chemistry of Textile Materials. In Textile Preparation and Dyeing, Choudhury, A. K. R., Ed.; Science Publishers, 2006; pp. 1-39. ISBN: 1-57808-402-4.

Vejar, K. The MODERN NATURAL DYER – A Comprehensive Guide to Dyeing Silk, Wool, Linen, and Cotton at Home. Harry N. Abrams, 2015, pp. 1-192. ISBN: 9781617691751.

Teli, M. D.; Sheikh, J.; Bhavsar, P. Multifunctional finishing of cotton using chitosan extracted from bio-waste. Int. J. Biol. Macromol. 2013, 54, 125–130. DOI: 10.1016/j.ijbiomac.2012.12.007.

Riaz, S.; Munir, A. Recent Advancements in Development of Antimicrobial Textiles. In Advances in Functional Finishing of Textiles, Textile Science and Clothing Technology; Shahid, M.; Adivarekar, R.; Eds.; Springer 2020, pp. 129–216. DOI: 10.1007/978-981-15-3669-4_6.

Grgac, S. F.; Tarbuk, A.; Dekanic, T.; Sujka, W.; Draczynski, Z. The chitosan implementation into cotton and polyester/cotton blend fabrics. Materials (Basel) 2020, 13(7), 1616. DOI: 10.3390/ma13071616.

Mahltig, B.; Fiedler, D.; Böttcher, H. Antimicrobial sol-gel coatings. J. Sol-Gel Sci. Technol. 2004, 32, 219-222. DOI: 10.1007/s10971-004-5791-7.

Mahltig, B.; Tatlises, B.; Fahmi, A.; Haase, H. Dendrimer stabilized silver particles for the antimicrobial finishing of textiles. Journal of the Textile Institute 2013, 104, 1042-1048. DOI: 10.1080/00405000.2013.772695.

Hanbing, W.; Haase, H.; Mahltig, B. Cationic Pretreatment for Reactive Dyeing of Cotton and its Simultaneous Antibacterial Functionalisation. Tekstilec 2020, 63, 27-37. DOI: 10.14502/Tekstilec2020.63.

Rath, G.; Hussain, T.; Chauhan, G.; Garg, T.; Goyal, A. Collagen nanofiber containing silver nanoparticles for improved wound-healing applications. J. Drug Tar. 2015, 24(6), 520–529. DOI: 10.3109/1061186X.2015.1095922.

Dutta, J.; Tripathi, S.; Dutta, P. K. Progress in antimicrobial activities of chitin, chitosan and its oligosaccharides: a systematic study needs for food applications. Food Sci Technol Int 2012, 18(1), 3–34. DOI: 10.1177/1082013211399195.

Hosseinnejad, M.; Jafari, S. M. Evaluation of different factors affecting antimicrobial properties of chitosan. Int. J. Biol. Macromol. 2016, 85, 467–475. DOI: 10.1016/j.ijbiomac.2016.01.022.

Cheung, R. C. F.; Ng, T. B.; Wong, J. H.; Chan, W. Y. Chitosan: An update on potential biomedical and pharmaceutical applications. Mar. Drugs 2015, 13(8), 5156-5186. DOI: 10.3390/md13085156.

King, D. Dyeing of cotton and cotton products. In Cotton: Science and Technology, Woodhead Publishing Limited 2006, pp. 353–377. DOI: 10.1533/9781845692483.2.353.

Mahltig, B.; Rabe, M.; Muth, M. Textiles, Dyeing, and Finishing. In Kirk-Othmer Encyclopedia of Chemical Technology, 2019, pp. 1–35. DOI: 10.1002/0471238961.0609140903011201.a01.pub2.

Wang, J.; Mahltig, B. Treatment of Kynol fiber materials – Part 1: dyeing processes. Commun. Dev. Assem. Text. Prod. 2022, 3(1), 17–27. DOI: 10.25367/cdatp.2022.3.p17-27.

Waring, D. R. Dyes for Cellulosic Fibers. In The Chemistry and Application of Dyes, Springer 1990, pp. 49–106. DOI: 10.1007/978-1-4684-7715-3_3.

Hande, P.; Kulkarni, K. S.; Adivarekar, R. V.; Bhagwat, S. S.; Bhate, P. M. A process for dyeing the cotton with direct dyes possessing primary aromatic amino groups furnishing wash fastness exhibited by reactive dyes. Color. Technol. 2022, 138(3), 248–254. DOI: 10.1111/cote.12586.

Verma, M.; Jeet Singh, S. S.; Rose, N. M. Optimization of Reactive Dyeing Process for Chitosan Treated Cotton Fabric. Cellul. Chem. Technol. 2022, 56(1-2), 165–175. DOI: 10.35812/CelluloseChemTechnol.2022.56.16.

Cook, C. C. Aftertreatments for Improving the Fastness of Dyes on Textile Fibres. Rev. Prog. Color. 1982, 12(1), 73–89. DOI: 10.1111/j.1478-4408.1982.tb00228.x.

Bhuiyan, M. A. R.; Shaid, A.; Khan, M. A. Cationization of Cotton Fiber by Chitosan and Its Dyeing with Reactive Dye without Salt. Chem. Mater. Eng. 2014, 2(4), 96–100. DOI: 10.13189/cme.2014.020402.

Zhang, Z.; Chen, L.; Ji, J.; Huang, Y.; Chen, D. Antibacterial Properties of Cotton Fabrics Treated with Chitosan. Text. Res. J. 2003, 73(12), 1103–1106. DOI: 10.1177/004051750307301213.

Tang, A. Y. L.; Wai Kan, C. Non-aqueous dyeing of cotton fiber with reactive dyes: A review. Color. Technol. 2020, 136(3), 214–223. DOI: 10.1111/cote.12459.

Bernava, A.; Reihmane, S. Properties of pre-modified linen fabric dyed with reactive dyes. IOP Conf. Ser. Mater. Sci. Eng. 2019, 500(1). DOI: 10.1088/1757-899X/500/1/012026.

Rosa, J. M.; Tambourgi, E. B.; Santana, J. C. C.; Costa, M. Reactive and Vat Dyestuff in the Dyeing of Cotton: A Review of Energy and Water Consumption, Ecological Analysis and Effluent Treatment. 4th International Workshop: Advances in Cleaner Production; São Paulo, Brazil, 2013, pp. 1-9.

Sökmen, N.; Aktas, M. O. Dyeing of linen and blends with direct, reactive and sulphur dyes. Asian J. Chem. 2013, 25(7), 3893–3896. DOI: 10.14233/ajchem.2013.13835.

Lewis, D. M.; Vo, L. T. T. Dyeing cotton with reactive dyes under neutral conditions. Color. Technol. 2007, 123(5), 306–311. DOI: 10.1111/j.1478-4408.2007.00099.x.

Ritter, A. Reaktivfarbstoffe mit cyclischen Amidgruppen – Synthese, Eigenschaften und färberisches Verhalten. Dissertation; Stuttgart University, 1999.

Lewis, D. M. The Chemistry of reactive dyes and their application processes. In Handbook of Textile and industrial dyeing; Clark, M., Ed.; Woodhead Publishing 2011, pp. 303-364. DOI: 10.1533/9780857093974.2.301.

Mata-Gómez, M. A.; Yasui, M. T.; Guerrero-Rangel, A.; Valdés-Rodríguez, S.; Winkler, R. Accelerated identification of proteins by mass spectrometry by employing covalent pre-gel staining with Uniblue A. PLoS One 2012, 7(2), 1–10. DOI: 10.1371/journal.pone.0031438.

Chen, G.; Haase, H.; Mahltig, B. Chitosan-modified silica sol applications for the treatment of textile fabrics: a view on hydrophilic, antistatic and antimicrobial properties. J. Sol-Gel Sci. Technol. 2019, 91, 461-470. doi.org/10.1007/s10971-019-05046-8.

Schematic view of the reaction of triazine anchor with the hydroxy group of cellulose

Downloads

Published

2023-07-01

How to Cite

Hoque, M. T., Benrui, T., Grethe, T., & Mahltig, B. (2023). Evaluation of chitosan based pretreatment for cotton and linen dyeing with direct dyes and reactive dyes. Communications in Development and Assembling of Textile Products, 4(2), 187–200. https://doi.org/10.25367/cdatp.2023.4.p187-200

Issue

Section

Peer-reviewed articles

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.