Overview on natural dyes and their IR-spectra - Part III: Natural dyes based on wooden materials
DOI:
https://doi.org/10.25367/cdatp.2024.5.p81-101Keywords:
wood based dyes, natural dye, infrared spectroscopy, brasilin, sandalwood, dragon palm, logwood, quebrachoAbstract
This paper on wood originated natural dyes is part III of a review series on natural dyes and their infrared spectra (IR spectra). Currently discussed are samples originated from yellow, red and blue wood of different types and supplied by different companies. Further, it is reported on quebracho wood extracts, dragon palm resin and osage yellow as dye materials. Dye materials from different barks are also considered. IR spectra are recorded from cut wooden pieces, wood powder and extracts. The IR spectra are analyzed and discussed in respect to composition of the samples. Reference measurements are done with different wooden samples gained from different sources. Finally, it is aimed to report spectroscopic data for identification of natural dye materials to support material identification and quality control.
References
Brudzyńska, P.; Sionkowska, A.; Grisel, M. Plant-derived colorants for food, cosmetic and textile industries: A review. Materials 2021, 14, 3484. DOI: doi.org/10.3390/ma14133484.
Ribeiro, J. S.; Veloso, C. M. Microencapsulation of natural dyes with biopolymers for application in food: A review. Food Hydrocolloids 2021, 112, 106374. DOI: doi.org/10.1016/j.foodhyd.2020.106374.
Neves, M. I. L.; Silva, E. K.; Meireles, M. A. A. Natural blue food colorants: Consumer acceptance, current alternatives, trends, challenges, and future strategies. Trends in Food Science & Technology 2021, 112, 163-173. DOI: doi.org/10.1016/j.tifs.2021.03.023.
Schweppe, H. Handbuch der Naturfarbstoffe; ecomed Verlagsgesellschaft, Landsberg, 1993.
Cardon, D. Natural Dyes – Sources, Tradition, Technology and Science; Archetype Publication Ltd., London, 2007.
Wardman, R.H. An Introduction to Textile Coloration; John Wiley & Sons Ltd., Hoboken, 2018.
Trueb, L.F. Pflanzliche Naturstoffe, Borntraeger Verlagsbuchhandlung, Stuttgart, 2015.
Slama, H. B.; Chenari Bouket, A.; Pourhassan, Z.; Alenezi, F. N.; Silini, A.; Cherif-Silini, H.; Oszako, T.; Luptakova, L.; Golinska, P.; Belbahri, L. Diversity of synthetic dyes from textile industries, discharge impacts and treatment methods. Applied Sciences 2021, 11, 6255. DOI: doi.org/10.3390/app11146255.
Fröse, A.; Schmidtke, K.; Sukmann, T.; Junger, I. J.; Ehrmann, A. Application of natural dyes on diverse textile materials. Optik 2019, 181, 215-219. DOI: doi.org/10.1016/j.ijleo.2018.12.099.
Seidu, R. K.; Eghan, B.; Acquaye, R. A Review of Circular Fashion and Bio-based Materials in the Fashion Industry. Circular Economy and Sustainability 2023, 1-23. DOI: doi.org/10.1007/s43615-023-00303-z.
Ahsan, R.; Masood, A.; Sherwani, R.; Khushbakhat, H. Extraction and application of natural dyes on natural fibers: an eco-friendly perspective. Review of Education, Administration & LAW 2020, 3, 63-75.
Hossain, K.R., Rahman, M.F., Baral, L.M., Alam, M.A., Islam, R. Design and development of canvas trousers using sustainable natural dye. Tekstilna Industrija 2023, 70, 11-20. DOI: 10.5937/tekstind2301011R.
Sabyrkhanova, S.; Efendioglu, N. O.; Yeldiyar, G.; Bitlisli, B. O. Investigation of dyeing, antibacterial and antifungal properties of blended fabrics treated with plant‐based dyestuffs and mordants as shoe materials. Coloration Technology 2023, early view. DOI: doi.org/10.1111/cote.12730.
Kamboj, A.; Jose, S.; Singh, A. Antimicrobial activity of natural dyes–a comprehensive review. Journal of Natural Fibers 2022, 19, 5380-5394. DOI: doi.org/10.1080/15440478.2021.1875378.
Das, S., Balamurugan, S., Thilagar, M., Selvaraj, S. Studies of antibacterial properties of banana fabric by dyeing with natural dyes. Tekstilna Industrija 2023, 71, 33-38. DOI: 10.5937/tekstind2303033D.
Grethe, T., Vorneweg, C., Haase, H., Mahltig, B. Natural Antibacterials for Technical Applications. Book chapter. In: Antibacterials: Synthesis, Properties and Biological Activities; Collins, E. (Editor), Nova Science Publisher Inc., New York, USA, 2017: pp. 91-114.
Gilbert, K. G.; Cooke, D. T. Dyes from plants: Past usage, present understanding and potential. Plant Growth Regulation 2001, 34, 57-69. DOI: doi.org/10.1023/A:1013374618870.
Hamdy, D.; Hassabo, A. G.; Othman, H. A. Various natural dyes using plant palette in coloration of natural
fabrics. Journal of Textiles, Coloration and Polymer Science 2021, 18, 121-141. DOI: 10.21608/jtcps.2021.79002.1063.
Yazaki, Y. Wood Colors and their Coloring Matters: A Review. Natural Product Communications 2015, 10, 505-512. DOI: doi.org/10.1177/1934578X1501000332.
Jabasingh, S. A. In Search of Natural Dyes Towards Sustainability from the Regions of Africa (Akebu‐Lan). Book chapter. In: Textiles and Clothing – Environmental Concerns and Solutions; Shabbir, M. (Editor), Scrivener Publishing Wiley, Hoboken, New Jersey, USA, 2019; pp. 27-43.
Mahltig, B. Overview on natural dyes and their IR-spectra – Part I: Plant based dyes with naphthoquinone and anthraquinone structure. Communications in Development and Assembling of Textile Products – CDATP 2024, 5, 20-37. DOI: doi.org/10.25367/cdatp.2024.5.p20-37.
Mahltig, B. Overview on natural dyes and their IR-spectra – Part II: Indigo containing plant dyes. Communications in Development and Assembling of Textile Products – CDATP 2024, 5, 66-80.
Hesse, M.; Meier, H.; Zeeh, B. Spectroscopic Methods in Organic Chemistry, Georg Thieme Verlag, 2008.
Günzler, H.; Gremlich, H.-U. IR Spectroscopy, WILEY-VCH Verlag, 2002.
Mahltig, B.; Werner, C.; Müller, M.; Jérôme, R.; Stamm, M. Protein adsorption on preadsorbed polyampholytic monolayers. J. Biomater. Sci., Polym. Edition 2001, 12, 995-1010. DOI: doi.org/10.1163/156856201753252525.
Peets, P.; Kaupmees, K.; Vahur, S.; Leito, I. Reflectance FT-IR spectroscopy as a viable option for textile fiber identification. Heritage Science 2019, 7, 1-10. DOI: doi.org/10.1186/s40494-019-0337-z.
Flesner, J.; Mahltig, B. Fibers from Natural Resources. Book chapter. In: Handbook of Composites from Renewable Materials, Volume 4 - Functionalization; Thakur, V.K.; Thakur, M.K.; Kessler, M.R. (Eds.), Scrivener Publishing Wiley, Hoboken, New Jersey, USA, 2017; pp. 287-310.
Mahltig, B. High-Performance Fibres – A Review of Properties and IR-Spectra. Tekstilec 2021, 64, 96-118. DOI: 10.14502/Tekstilec2021.64.96-118.
Borlandelli, C. M.; Mahltig, B. Leather Types and Fiber-Based Leather Alternatives-An Overview on Selected Materials, Properties, Microscopy, Electron Dispersive Spectroscopy EDS and Infrared Spectroscopy. Ann. Textile Eng. Fashion. Technol. 2022, 1, 1-10.
Chen, C.-S.; Brown, C.W.; Bide, M.J. Non-destructive near-infra-red analysis for the identification of dyes on textiles. Journal of the Society of Dyers and Colourists 1997, 113, 51-56. DOI: doi.org/10.1111/j.1478-4408.1997.tb01867.x.
Zhou, J., Yu, L., Ding, Q., Wang, R. Textile fiber identification using near-infrared spectroscopy and pattern recognition. Autex Research Journal 2019, 19, 201-209. DOI: 10.1515/aut-2018-0055.
Yuen, C. W. M.; Ku, S. K. A.; Choi, P. S. R.; Kan, C. W.; Tsang, S. Y. Determining functional groups of commercially available ink-jet printing reactive dyes using infrared spectroscopy. Research Journal of Textile and Apparel 2005, 9, 26-38. DOI: doi.org/10.1108/RJTA-09-02-2005-B004.
Jemo, D.; Parac-Osterman, D. Identification of Natural Dyes on 18th Century Liturgical Textiles form Dubrovnik. Fibres & Textiles in Eastern Europe 2017, 25, 113-120. DOI. 10.5604/12303666.1227891.
Bruni, S., De Luca, E., Guglielmi, V., Pozzi, F. Identification of Natural Dyes on Laboratory-Dyed Wool and Ancient Wool, Silk, and Cotton Fibers Using Attenuated Total Reflection (ATR) Fourier Transform Infrared (FT-IR) Spectroscopy and Fourier Transform Raman Spectroscopy. Appl. Spectroscopy 2011, 65, 1017-1023.
Priyadharsini, P.; David, S. T. Natural dyes and their FT-IR spectroscopy studies. International Journal on Applied Bioengineering 2014, 8, 15-18.
Kremer Pigmente GmbH (Aichstetten, Germany), product web page for Yellow Wood, cut pieces. https://www.kremer-pigmente.com/en/shop/dyes-vegetable-color-paints/36200-yellow-wood.html (accessed 2023-01-18).
Pflanzenfärbershop (Hückelhoven-Baal, Germany), product web page for Yellow wood, cut. https://shop.pflanzenfaerber.eu/farbepflanzen/62-gelbholz-citrinum-lignum-100g.html (accessed 2023-01-18).
Kremer Pigmente GmbH (Aichstetten, Germany), product web page for Logwood, cut pieces. https://www.kremer-pigmente.com/en/shop/dyes-vegetable-color-paints/36100-logwood-cut-pieces.html (accessed 2023-01-18).
Pflanzenfärbershop (Hückelhoven-Baal, Germany), product web page for logwood, cut pieces. https://shop.pflanzenfaerber.eu/farbepflanzen/41-blauholz-campechianum-lignum-100g.html (accessed 2024-01-25).
Pflanzenfärbershop (Hückelhoven-Baal, Germany), product web page for logwood wood, powder. https://shop.pflanzenfaerber.eu/farbepflanzen/167-blauholzpulver-campechianum-lignum-pulvis-100g.html (accessed 2023-01-18).
Pflanzenfärbershop (Hückelhoven-Baal, Germany), product web page for logwood wood, extract. https://shop.pflanzenfaerber.eu/farbepflanzenextrakte/151-blauholzextrakt-campechianum-lignum-extractum-10g.html (accessed 2023-01-18).
Das Wollschaf (Zweibrücken, Germany), product web page for logwood, extract. https://das-wollschaf.de/osshop/catalog/product_info.php?cPath=90_91_92&products_id=581 (accessed 2023-01-27).
PlanAlto (Mexico), web page for ecoforestal carbon initiative. www.planalto.mx (accessed 2024-01-18).
Carl Roth GmbH (Germany), product webpage for hematoxylin (C.I. 75290) for microscopy. https://www.carlroth.com/de/de/von-a-bis-z/haematoxylin-%28c-i-%C2%A075290%29/p/3816.2 (accessed 2024-01-25).
Kremer Pigmente GmbH (Aichstetten, Germany), product web page for Brazilwood, shavings. https://www.kremer-pigmente.com/en/shop/dyes-vegetable-color-paints/natural-organic-dyes-vegetable-color-paints/36150-brazilwood-shavings.html (accessed 2023-01-18).
Pflanzenfärbershop (Hückelhoven-Baal, Germany), product web page for Brazilwood, extract. https://shop.pflanzenfaerber.eu/farbepflanzenextrakte/391-brasilinextrakt-10g.html (accessed 2023-01-18).
Kremer Pigmente GmbH (Aichstetten, Germany), product web page for Brazilwood, extract. https://www.kremer-pigmente.com/en/shop/dyes-vegetable-color-paints/36160-redwood-extract.html (accessed 2023-05-30).
Pflanzenfärbershop (Hückelhoven-Baal, Germany), product web page for Redwood, Sandelwood, cut pieces. https://shop.pflanzenfaerber.eu/farbepflanzen/101-rotsandelholz-santali-rubrum-lignum-100g.html (accessed 2023-01-18).
Kremer Pigmente GmbH (Aichstetten, Germany), product web page for sandal wood, powder. https://www.kremer-pigmente.com/en/shop/dyes-vegetable-color-paints/36180-sandalwood.html (accessed 2023-01-27).
Pflanzenfärbershop (Hückelhoven-Baal, Germany), product web page for Quebrachowood, extract. https://shop.pflanzenfaerber.eu/farbepflanzenextrakte/157-quebrachoholzextrakt-schinopsis-lignum-extractum-10g.html (accessed 2023-01-18).
Kremer Pigmente GmbH (Aichstetten, Germany), product web page for tannin, powder. https://www.kremer-pigmente.com/en/shop/dyes-vegetable-color-paints/94500-tannin.html (accessed 2024-01-18).
Pflanzenfärbershop (Hückelhoven-Baal, Germany), product web page for Dragon Palm resin, powder. https://shop.pflanzenfaerber.eu/farbepflanzen/176-drachenpalmharzpulver-resina-draconis-pulvis-10g.html (accessed 2023-01-18).
Kremer Pigmente GmbH (Aichstetten, Germany), product web page for Dragon Palm resin, powder. https://www.kremer-pigmente.com/en/shop/dyes-vegetable-color-paints/37000-dragon-s-blood-powder.html (accessed 2023-05-30).
Kremer Pigmente GmbH (Aichstetten, Germany), product web page for osage yellow https://www.kremer-pigmente.com/en/shop/pigments/37370-osage-yellow.html (accessed 2024-01-18).
Pflanzenfärbershop (Hückelhoven-Baal, Germany), product web page for Frangulae Cortex, dried pieces https://shop.pflanzenfaerber.eu/farbepflanzen/59-faulbaumrinde-frangulae-cortex-100g.html (accessed 2024-01-18).
Kremer Pigmente GmbH (Aichstetten, Germany), product web page for Frangulae Cortex, cut pieces dried https://www.kremer-pigmente.com/en/shop/dyes-vegetable-color-paints/38520-frangulae-cortex.html (accessed 2024-01-18).
Pflanzenfärbershop (Hückelhoven-Baal, Germany), product web page for Tiliae Cortex, cut pieces dried https://shop.pflanzenfaerber.eu/farbepflanzen/312-lindenrinde-tiliae-cortex-100g.html (accessed 2024-01-18).
Pflanzenfärbershop (Hückelhoven-Baal, Germany), product web page for Salix Purpurea, cut pieces dried. https://shop.pflanzenfaerber.eu/farbepflanzen/189-purpurweidenrinde-salix-purpurea-cortex-100g.html (accessed 2024-01-18).
Kremer Pigmente GmbH (Aichstetten, Germany), product web page for grinded apple tree, https://www.kremer-pigmente.com/en/shop/dyes-vegetable-color-paints/38530-apple-tree-grinded.html (accessed 2024-01-18).
Modulor GmbH (Berlin, Germany), product web page for product sample box. https://www.modulor.de/modulor-musterkiste.html (accessed 2023-01-27).
Pawlak, Z.; Pawlak, A.S. A Review of Infrared Spectra from Wood and Wood Components Following Treatment with Liquid Ammonia and Solvated Electrons in Liquid Ammonia. Appl. Spectroscopy Reviews 1997, 32, 349-383. DOI: doi.org/10.1080/05704929708003319.
Tolvaj, L. Traditions, anomalies, mistakes and recommendations in infrared spectrum measurement for wood. Wood Sci. & Technol. 2022, 56, 1819-1834. DOI: doi.org/10.1007/s00226-022-01425-7.
Sudiyani, Y.; Imamura, Y.; Doi, S.; Yamauchi, S. Infrared spectroscopic investigations of weathering effects on the surface of tropical wood. J. Wood Sci. 2003, 49, 86-92. DOI: doi.org/10.1007/s100860300014.
Vevere, L.; Fridrihsone, A.; Kirpluks, M.; Cabulis, U. A review of wood biomass-based fatty acids and rosin acids use in polymeric materials. Polymers 2020, 12, 2706. DOI: doi.org/10.3390/polym12112706.
Choudhury, A.; Chakraborty, I.; Banerjee, T.S.; Vana, D.R.; Adapa, D. Efficacy of Morin as a Potential Therapeutic Phytocomponent: Insights into the Mechanism of Action. International Journal of Medical Research & Health Sciences 2017, 6, 175-194.
Eggert, D.A. The Use of Morin for Fluorescent Localization of Aluminum in Plant Tissues. Stain Technology 1970, 45, 301-303. DOI: doi.org/10.3109/10520297009067806.
Ferreira, E.S.B.; Hulme, A.N.; McNab, H.; Quye, A. The natural constituents of historical textile dyes. Chem. Soc. Rev. 2004, 33, 329-336. DOI: doi.org/10.1039/B305697J.
Lambert, E., Kendall, T. The complete guide to natural dyeing, Search Press Ltd., Wellwood, 2010.
Titford, M. The long history of hematoxylin. Biotechnic & Histochemistry 2005, 80, 73-78. doi.org/10.1080/10520290500138372.
Shahi, Z.; Mehrizi, M.K.; Hadizadeh, M. A Review of the Natural Resources Used to Hair Color and Hair Care Products. J. Pharm. Sci. & Res. 2017, 9, 1026-1030.
Kahr, B.; Lovell, S.; Subramony, J. A. The progress of logwood extract. Chirality 1998, 10, 66-77. DOI: doi.org/10.1002/chir.12.
Krifa, N.; Miled, W.; Behary, N.; Campagne, C.; Cheikhrouhou, M.; Zouari, R. Dyeing performance and antibacterial properties of air-atmospheric plasma treated polyester fabric using bio-based Haematoxylum campechianum L. dye, without mordants. Sustainable Chemistry and Pharmacy 2021, 19, 100372. DOI: doi.org/10.1016/j.scp.2020.100372.
Bettinger, C, Zimmermann, H.W. New investigations on hematoxylin, hematein and hematein-aluminium complexes. Histochemistry 1991, 95, 279-288. DOI: doi.org/10.1007/BF00266778.
Chiriac, A.P.; Nita, L.E.; Neamtu, I.; Popescu, C.M.; Ioanid, A.; Ioanid, G.E. Hematoxylin Plasma Treatment. Rom. Journ. Phys. 2005, 50, 1119-1126.
Dapson, R. W.; Bain, C. L. Brazilwood, sappanwood, brazilin and the red dye brazilein: from textile dyeing and folk medicine to biological staining and musical instruments. Biotechnic & Histochemistry 2015, 90, 401-423. DOI: doi.org/10.3109/10520295.2015.1021381.
Lu, Y.; Bai, H.; Kong, C.; Zhong, H.; Breadmore, M. C. Analysis of brazilin and protosappanin B in sappan lignum by capillary zone electrophoresis with acid barrage stacking. Electrophoresis 2013, 34, 3326-3332. DOI: doi.org/10.1002/elps.201300402.
Xu, H. X.; Lee, S. F. The antibacterial principle of Caesalpina sappan. Phytotherapy Research 2004, 18, 647-651. DOI: doi.org/10.1002/ptr.1524.
Wongsooksin, K.; Rattanaphani, S.; Tangsathitkulchai, M.; Rattanaphani, V.; Bremner, J. B. Study of an Al (III) complex with the plant dye brazilein from Ceasalpinia sappan Linn. Suranaree J. Sci. Technol. 2008, 15, 160-163.
Ulma, Z.; Rahayuningsih, E.; Wahyuningsih, T. D. Methylation of brazilein on secang (Caesalpinia sappan Linn) wood extract for maintain color stability to the changes of pH. IOP Conf. Series: Mater. Sci. Eng. 2018, 299, DOI: doi.org/10.1088/1757-899X/299/1/012075.
Lee, J.; Kang, M. H.; Lee, K. B.; Lee, Y. Characterization of natural dyes and traditional Korean silk fabric by surface analytical techniques. Materials 2013, 6, 2007-2025. DOI: doi.org/10.3390/ma6052007.
Barkaat, S.; Mehboob, M.; Adeel, S.; Rehman, F.; Amin, N.; Habib, N.; Hosseinnezhad, M. Sustainable Microwave-Assisted Extraction of Santalin Red Sandal Wood Powder (Ptrecarpus santalinus) for Bio-Coloration of Mordanted Silk Fabric. Separations 2023, 10, 118. DOI: doi.org/10.3390/separations10020118.
Strych, S.; Trauner, D. Biomimetic synthesis of santalin A, B and santarubin A, B, the major colorants of red sandalwood. Angewandte Chemie International Edition 2013, 52, 9509-9512. DOI: 10.1002/anie.201302317.
Venter, P. B.; Senekal, N. D.; Amra-Jordaan, M.; Bonnet, S. L.; Van der Westhuizen, J. H. Analysis of commercial proanthocyanidins. Part 2: An electrospray mass spectrometry investigation into the chemical composition of sulfited quebracho (Schinopsis lorentzii and Schinopsis balansae) heartwood extract. Phytochemistry 2012, 78, 156-169. DOI: doi.org/10.1016/j.phytochem.2012.01.027.
Roux, D. G.; Evelyn, S. R. Condensed tannins. 4. The distribution and deposition of tannins in the heartwoods of Acacia mollissima and Schinopsis spp. Biochemical Journal 1960, 76, 17-23. DOI: doi.org/10.1042/bj0760017.
Cesprini, E.; Sket, P.; Causin, V.; Zanetti, M.; Tondi, G. Development of Quebracho (Schinopsis balansae) Tannin-Based Thermoset Resins. Polymers 2021, 13, 4412. DOI: doi.org/10.3390/polym13244412.
Matsuo, T.; Ito, S. The chemical structure of kaki-tannin from immature fruit of the persimmon (Diospyros kaki L.). Agricultural and Biological Chemistry 1978, 42, 1637-1643. DOI: doi.org/10.1080/00021369.1978.10863225.
Ricci, A.; Olejar, K. J.; Parpinello, G. P.; Kilmartin, P. A.; Versari, A. Application of Fourier transform infrared (FTIR) spectroscopy in the characterization of tannins. Applied Spectroscopy Reviews 2015, 50, 407-442. DOI: doi.org/10.1080/05704928.2014.1000461.
Jura-Morawiec, J.; Marcinkiewicz, J.; Caujapé-Castells, J. Unraveling the role of dragon’s blood in the undisturbed growth of dragon trees. Trees 2023, 37, 993-999. DOI: doi.org/10.1007/s00468-022-02349-2.
Gupta, D.; Bleakley, B.; Gupta, R. K. Dragon's blood: botany, chemistry and therapeutic uses. Journal of Ethnopharmacology 2008, 115, 361-380. DOI: doi.org/10.1016/j.jep.2007.10.018.
Rao, G. S. R.; Gerhart, M. A.; Lee III, R. T.; Mitscher, L. A.; Drake, S. Antimicrobial agents from higher plants. Dragon's blood resin. Journal of Natural Products 1982, 45, 646-648.
Edward, H. G.; de Oliveira, L. F. C.; Quye, A. Raman spectroscopy of coloured resins used in antiquity: dragon's blood and related substances. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2001, 57, 2831-2842. DOI: doi.org/10.1016/S1386-1425(01)00602-3.
Edwards, H. G.; de Oliveira, L. F.; Prendergast, H. D. Raman spectroscopic analysis of dragon's blood resins—basis for distinguishing between Dracaena (Convallariaceae), Daemonorops (Palmae) and Croton (Euphorbiaceae). Analyst 2004, 129, 134-138. DOI: doi.org/10.1039/B311072A.
Sousa, M. M.; Melo, M. J.; Parola, A. J.; de Melo, J. S. S.; Catarino, F.; Pina, F.; Cook, F.E.M.; Simmonds, M.S.J.; Lopes, J. A. Flavylium chromophores as species markers for dragon's blood resins from Dracaena and Daemonorops trees. Journal of Chromatography A 2008, 1209, 153-161. DOI: doi.org/10.1016/j.chroma.2008.09.007.
Invernizzi, C.; Rovetta, T.; Licchelli, M.; Malagodi, M. Mid and near-infrared reflection spectral database of natural organic materials in the cultural heritage field. International Journal of Analytical Chemistry, 2018, 2018, 7823248. DOI: doi.org/10.1155/2018/7823248.
Singh, P., Ansari, Z., Ray, S., Bandyopadhyay, B., Sen, K. Effect of gamma-irradiation on ruthenium-morin nanocomposite for trace detection of Ce(IV), Ce(III) and Dy(III). Mater. Chem. Phys. 2020, 248, 122949. DOI: doi.org/10.1016/j.matchemphys.2020.122949.
Arendt, H. Werkstatt Pflanzenfarben; atVerlag, Aarau, Switzerland, 5th edition, 2020.
Benli, H., Bahtiyari, M. Providing UV Protection Features for Woolen Fabric Using Buckthorn Dye. J. Natural Fibers 2023, 20, 2143978. DOI: doi.org/10.1080/15440478.2022.2143978..
Prinz, E. Färberpflanzen, Schweizerbart Verlagsgesellschaft, Stuttgart, Germany, 2nd edition, 2014.
Deveoglu, O., Erkan, G., Torgan, E., Karadag, R. The evaluation of procedures for dyeing silk with buckthorn and wallon oak on the basis of colour changes and fastness characteristics. Coloration Technology 2013, 129, 223-231. DOI: doi.org/10.1111/cote.12023.
Karadag, R., Buyukakinici, B.Y., Torgan, E. Extraction and Natural Cotton Dyeing of Valonia Oak and Anatolian Buckthorn by Microwave Irradiation. J. Natural Fibers 2022, 19, 159-172. DOI: doi.org/10.1080/15440478.2020.1731907.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Boris Mahltig
This work is licensed under a Creative Commons Attribution 4.0 International License.