Haptic virtualisation of surfaces: feeling textiles on your phone
DOI:
https://doi.org/10.25367/cdatp.2021.2.p80-90Keywords:
Haptic human machine interfaces, textile surface, roughness, mobile consumer devices, tactile renderingAbstract
The haptic impression of textile surface properties has a decisive influence on its evaluation and ultimately on its acceptance and usability. Many solutions are used to replicate a static contour or shape, e.g. to feel controls on common touch displays. In contrast, this project investigates whether it is possible to simulate the roughness or friction behaviour of a textile surface using a commercially available mobile device.
References
N. Magnenat-Thalmann, P. Volino, U. Bonanni, I. R. Summers, M. Bergamasco, F. Salsedo and F.-E. Wolter. 2007. From physics-based simulation to the touching of textiles: the HAPTEX project. The International Journal of Virtual Reality 6, 3, 35-44.
Tanvas Inc. Sample Applications – Tanvas. 2021. Retrieved May 7, 2021 from https://tanvas.co/sample-applications.
Haptische Displays: Die Zukunft fühlbarer Tasten auf flachen Bildschirmen. Retrieved April 20, 2020 from https://www.trendsderzukunft.de/haptische-displays-die-zukunft-fuehlbarer-tasten-auf-flachen-bildschirmen/.
D. Zühlke. 2012. Nutzergerechte Entwicklung von Mensch-Maschine-Systemen: Useware-Engineering für technische Systeme (2nd ed.) Springer-Verlag, Berlin and Heidelberg.
M. Grunwald. 2008. Human Haptic Perception: Basics and Applications. Birkhäuser Verlag, Basel, Berlin and Boston.
G. A. Gescheider. 1997. Psychophysics: The Fundamentals (3. ed.). Lawrence Erlbaum Associates, New Jersey and London.
T. A. Kern and M. Matysek. Entwicklung haptischer Geräte: Ein Einstieg für Ingenieure (7. ed.). Springer-Verlag, Berlin and Heidelberg.
K. O. Johnson and J. R. Phillips. 1981. Tactile spatial-resolution. I. Two-point discrimination, gap detection, grating resolution, and letter recognition. Journal of Physiology 46, 6, 1171-1191.
K. A. Kaczmarek and P. Bach-y-Rita. 1995. Tactile Displays. In W. Barfield and T. A. Furness III (Eds.). Virtual environments and advanced interface design. Oxford University Press, New York, 349-414.
Intuitive Surgical Inc., Intuitive | da Vinci Robotic Assisted Surgical System. 2019. Retrieved May 27, 2019 from https://www.intuitive.com/.
V. G. Chouvardas, A. N. Miliou and M. K. Hatalis. 2008. Tactile displays: Overview and recent advances. Displays 29, 185-194. DOI: https://doi.org/10.1016/j.displa.2007.07.003.
H. Böse, H. Ermert, A. Tunayar, G. Monkman, M. Baumann, W. Khaled, S. Reichling, O. T. Bruhns, H. Freimuth and S. Egersdörfer. 2004. A novel haptic sensor-actuator system for applications in virtual reality. Proc. 4th Internat Conf. EuroHaptics 2004, 88-93.
G. Paschew. 2020. Intermodale Displays auf Basis intrinsisch aktiver Polymere, Technische Universität Dresden.
D. Allerkamp, G. Böttcher, F.-E. Wolter, A. C. Brady, J. Qu and I. R. Summers. 2007. A vibrotactile approach to tactile rendering. The Visual Computer 23, 97-108. DOI: https://doi.org/10.1007/s00371-006-0031-5.
Y. Ikei and M. Shiratori 2002. TextureExplorer: A Tactile and Force Display for Virtual Textures. In Proceedings of the 10th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, Washington.
G.-H. Yang, K.-U. Kyung, M. A. Srinivasan and D.-S. Kwon. 2006. Quantitative tactile display device with pin-array type tactile feedback and thermal feedback. In Proceedings 2006 IEEE International Conference on Robotics and Automation ICRA 2006.
K.-U. Kyung, M. Ahn, D.-S. Kwon and M. A. Srinivasan, 2005. A compact broadband tactile display and its effectiveness in the display of tactile form. In First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. World Haptics Conference.
E. Freeman, R. Anderson, J. Williamson, G. Wilson and S. A. Brewster. 2017. Textured Surfaces for Ultrasound Haptic Displays. In Proceedings of the 19th ACM International Conference on Multimodal Interaction, New York, USA.
O. Bau, I. Poupyrev, A. Israr und C. Harrison. 2010. Teslatouch: Electrovibration for Touch Surfaces. In UIST'10: Proceedings of the 23nd annual ACM symposium on User interface software and technology, New York, USA.
M. E. Altinsoy and S. Merchel. 2012. Electrotactile feedback for handheld devices with touch screen and simulation of roughness. IEEE Transactions on Haptics 5, 6-13. DOI: https://doi.org/10.1109/TOH.2011.56.
Texas Instruments. 2013. Haptics: Solutions for ERM and LRA Actuators. Retrieved June 6, 2019 from http://www.ti.com/lit/ml/sszb151/sszb151.pdf.
AppleInsider. 2016. Inside the iPhone 7: Apple's Taptic Engine, explained. Retrieved Jung 6, 2019 from: https://appleinsider.com/articles/16/09/27/inside-the-iphone-7-apples-taptic-engine-explained.
Sony Mobile Communications. 2018. Meet the Makers: Die Macher hinter der Unterhaltungsrevolution – Sony Mobile (Deutschland). Retrieved Jung 21, 2019 from https://blogs.sonymobile.com/de/2018/05/25/meet-makers-dynamic-vibration-system/.
E. Steinbach, M. Strese, M. Eid, X. Liu, A. Bhardwaj, Q. Liu, M. Al-Ja’afreh, T. Mahmoodi, R. Hassen, A. E. Saddik and O. Holland. 2019. Haptic codecs for the tactile internet. Proceedings of the IEEE 107, 447-470. DOI https://doi.org/10.1109/JPROC.2018.2867835.
Google Inc. 2019. Vibrator | Android Developers Retrieved July 17, 2019 from https://developer.android.com/reference/android/os/Vibrator.html.
Google Inc. 2019. MotionEvent | Android Developers. Retrieved June 18, 2019 from https://developer.android.com/reference/android/view/MotionEvent.
M. Jungmann. 2004. Entwicklung elektrostatischer Festkörperaktoren mit elastischen Dielektrika für den Einsatz in taktilen Anzeigefeldern. Dissertation Thesis, Technische Universität Darmstadt.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Annerose Braune, Christopher Martin, Tung Le
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.