Skin and soft tissue modeling and its impact on apparel modeling
DOI:
https://doi.org/10.25367/cdatp.2023.4.p151-163Keywords:
Landmarking, feature points, rig, soft tissue modelling, 2D modelingAbstract
Rigid body avatars do not fully define the complex interaction between human and body-worn product (humanoid-to-coveroid). Skin and soft tissue modeling to create more realistic 3D humanoid body models are needed. We considered if humanoid split lines relevant to pattern-engineering practice can be related to biodynamic and fold lines of the skin. Changes in skin and tissue are expected, depending on the dermis, the effects of movement, and the effects of coveroid pressure. The physiological functions of the skin may be assigned mechanical parameters for dynamic study utilizing biodynamic excisional skin tension (BEST) lines, main folding lines (MFL) with Langer’s lines. Critical to such study is the connecting of the skin to the rig (humanoid virtual skeleton). The use of stable (skeletal feature points related to both the virtual skeleton and apparel block patterns) and morphological (skin feature points identifying areas of morphological variation and dynamic study) landmarks for connecting the skin to rig was analyzed. We utilized these landmarks to drive lines as BEST, MFL and Langer’s lines for the mapping of skin deformations. Initial findings suggest the use of stable and morphological landmarks could have profoundly positive effects throughout the entire digital product creation (DPC) production pipeline and should be further explored & are important in developing standard topology practice.
References
Skin, Cleveland Clinic, https://my.clevelandclinic.org/health/articles/10978-skin (accessed 2023 March).
ISO/DIS 20947-3, Performance evaluation protocol for digital fitting systems – Part 3: Digital fitting performance. https://www.iso.org/obp/ui/#iso:std:77732:en.
Paul, S. Biodynamic Excisional Skin Tension (BEST) Lines, Revisiting Langer’s Lines, Skin Biomechanics, Current Concepts in Cutaneous Surgery and the (lack of) Science behind Skin Lines used in Surgical Excisions. Journal of Dermatological Research March 2017, 2, 77-87. DOI: 10.17554/j.issn.2413-8223.2017.02.19 (accessed 2022-11-19).
Lemperle, G. Prevention of hyper-and hypotrophic scars through surgical incisions in the direction of the “main folding lines” of the skin. Plastic and Aesthetic Research 2020, 7, 40. DOI: 10.20517/2347-9264.2020.14.
Scott, E.; Schildmeyer, K.; Ruderman, G.; Ashdown, S.; McDonald, C.; Gill, S. Proposed Landmarking for Improved Digital Product Creation. Communications in Development and Assembling of Textile Products 2023, 4, 70-87. DOI: 10.25367/cdatp.2023.4.p70-87.
Kalra, A.; Lowe, A.; Al-Jumaily, A. M. Mechanical Behaviour of Skin: A Review. Journal of Material Science and Engineering 2016, 5, 1000254. DOI: 10.4172/2169-0022.1000254.
ISO 18825-2:2016, Clothing – Digital fittings – Part 2 Vocabulary and terminology used for attributes of the virtual body. https://www.iso.org/standard/63494.html (accessed 2022-12-27).
ISO 19774-1:2019, Information technology – Computer graphics, image processing and environmental data representation – Part1: Humanoid animation (HAnim) architecture, https://www.iso.org/standard/64788.html (accessed 2022-12-27).
Gill, S.; Scott, E.; McDonald, C.; Klepser, A.; Dabolina, I. Landmarking for Product Development. IEEESA Industry Connections and Standards Group for 3D Body Processing Website, PDF STDVA25126 978-1-5044-8226-4, https://standards.ieee.org/industry-connections/3d/bodyprocessing/ (accessed 2022-12-27).
Glascoe, W.; Schildmeyer, K.; Scott, E.; Gill, S.; Ballester, A.; McDonald, C. Relationships between Rigs and Humanoid and Coveroid Landmarks. Proc. of 3DBODY.TECH 2022 – 13th Int. Conf. and Exh. on 3D Body Scanning and Processing Technologies, Lugano, Switzerland, 25-26 Oct. 2022, #30, https://3dbody.tech/cap/papers2022.html.
SMPL, 2020 Max-Planck-Gesellschaft, https://smpl.is.tue.mpg.de/ (accessed 2022 November).
Xu, H.; Bazavan, E. G.; Zanfir, A.; Freeman, W. T.; Sukthankar, R.; Sminchisescu, C. Ghum & ghuml: Generative 3d human shape and articulated pose models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 6184-6193.
Casas, D.; Otaduy, M. A. Learning nonlinear soft-tissue dynamics for interactive avatars. Proceedings of the ACM on Computer Graphics and Interactive Techniques 2018, 1, 1-15. DOI: 10.1145/3203187.
DYNA, Max Planck Institute for Intelligent Systems, http://dyna.is.tue.mpg.de/ (accessed 2022 November).
Villegas, R., Ceylan, D., Hertzmann, A., Yang, J., & Saito, J. Contact-Aware Retargeting of Skinned Motion. In Proceedings of the IEEE/CVF International Conference on Computer Vision 2021, pp. 9720-9729. https://arxiv.org/abs/2109.07431.
Pai, D. K.; Rothwell, A.; Wyder-Hodge, P.; Wick, A.; Fan, Y.; Larionov, E.; Harrison, D.; Raj Neog, D.; Shing, C. The human touch: Measuring contact with real human soft tissues. ACM Transactions on Graphics (TOG) 2018, 37(4), 1-12. DOI: 10.1145/3197517.3201296.
Casas, D., & Otaduy, M. A. (2021). U.S. Patent Application No. 17/076,660. Patent on Modeling of non-linear soft-tissue dynamics for interactive avatars. https://patents.google.com/patent/WO2019207176A1/en
Pai, D. Vital Mechanics, https://www.vitalmechanics.com/.
Paul, S. Biodynamic excisional skin tension lines for surgical excisions: untangling the science. Ann. R. Coll. Surg. Engl. 2018, 100(4), 330-337. DOI: 10.1308/rcsann.2018.0038.
Parrilla, E.;Ballester, A.; Parra, F.; Ruescas, A. V.; Uriel, J.; Garrido, D.; Alemany, S. MOVE 4D: Accurate High-Speed 3D Body Models in Motion. In Proc. of 3DBODY.TECH 2019 – 10th Int. Conf. and Exh. on 3D Body Scanning and Processing Technologies, Lugano, Switzerland, 22-23 Oct. 2019, pp. 30-32. DOI: 10.15221/19.030.
Ballester, A.; Parrilla, E.; Ruescas, A. V.; Uriel, J.; Alemany, S. To MOVE4D, or not to move, that is the question. Proc. of 3DBODY.TECH 2021 – 12th Int. Conf. and Exh. on 3D Body Scanning and Processing Technologies, Lugano, Switzerland, 19-20 Oct. 2021, #48. https://vimeo.com/633184432/fab288ca4c.
Manas Ballester, B. Yes, We Scan. Proc. of 3DBODY.TECH 2022 – 13th Int. Conf. and Exh. on 3D Body Scanning and Processing Technologies, Lugano, Switzerland, 25-26 Oct. 2022, #53. https://vimeo.com/755934295/8733132814.
Anguelov, D.; Srinivasan, P.; Koller, D.; Thrun, S.; Rodgers, J.; Davis, J. Scape: shape completion and animation of people. In ACM SIGGRAPH 2005 Papers, 2005, pp. 408-416. DOI: 10.1145/1186822.1073207.
Alemany, S.; Uriel, J.; Ballester, A.; Parrilla, E. Three-dimensional body shape modeling and posturography. In DHM and Posturography, 2019, pp. 441-457; Academic Press. DOI: 10.1016/B978-0-12-816713-7.00032-5.
Wu, G.; Cavanagh, P. R. ISB recommendations for standardization in the reporting of kinematic data. Journal of Biomechanics 1995, 28(10), 1257-1262. DOI: 10.1016/0021-9290(95)00017-C.
Wu, G.; Siegler, S.; Allard, P.; Kirtley, C.; Leardini, A.; Rosenbaum, D.; Whittle, M.; D’Lima, D. D.; Cristofolini, L.; Witte, H.; Schmid, O.; Stokes, I. ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion – part I: ankle, hip, and spine. Journal of Biomechanics 2002, 35(4), 543-548. DOI: 10.1016/S0021-9290(01)00222-6.
Wu, G.; Van der Helm, F. C.; Veeger, H. D.; Makhsous, M.; Van Roy, P.; Anglin, C.; Nagels, J.; Karduna, A. R.; McQuade, K.; Wang, X. G.; Werner, F. W.; Buchholz, B. ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion – Part II: shoulder, elbow, wrist, and hand. Journal of Biomechanics 2005, 38(5), 981-992. DOI: 10.1016/j.jbiomech.2004.05.042.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Carol McDonald, Randy K Rannow, Alfredo Ballester, Katy Schildmeyer, Emma Scott, Simeon Gill
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.