Development of a transdisciplinary education concept to prepare textile technology students for dealing with AI

Authors

  • Lennart Hellweg Hochschule Niederrhein
  • Johanna Bulthaupt
  • Alen Tabakovic
  • Mathias Beer Hochschule Niederrhein

DOI:

https://doi.org/10.25367/cdatp.2024.5.p48-55

Keywords:

artificial intelligence, artificial neural network, transdisciplinary project, education concept, image classification, fiber analysis

Abstract

A basic understanding of the mechanisms and implications of the use of Artificial intelligence (AI) is crucial to effectively implement AI in business and society. To achieve this goal, the research project described here aims to provide students from different disciplines with practical AI knowledge. Instead of focusing on traditional teaching approaches, students work together on transdisciplinary and interdisciplinary projects. The basis here is provided by department-specific application scenarios. Supported by learning nuggets, expert lectures and an accessible software infrastructure, students thus gain easy access to AI topics.
The goal in the Faculty of Textile and Clothing Technology is to train specialists in the use of AI in the textile process chain. Students will learn how to classify image data of fibers based on a practical example. Among other things, they will generate a data set for a neural network and work closely with computer science students to implement it. The focus is on enabling students to apply AI independently and thus create the basis for new innovative ideas in industry

References

Golowko, N. Future Skills in Education: Knowledge Management, AI and Sustainability as Key Factors in Competence-Oriented Education; Springer Gabler Wiesbaden, 2021.

Niemi, H.; Pea, R. D.; Lu, Y. AI in Learning: Designing the Future; Springer International Publishing, 2022.

Ehlers, U.-D. Future Skills: Lernen der Zukunft – Hochschule der Zukunft; Springer VS Wiesbaden, 2020.

Janssen, C. P.; Nouwen, R.; Overvliet, K.; Adriaans, F.; Stuit, S.; Doeskar, T.; Harvey, B. Multidisciplinary and Interdisciplinary Teaching in the Utrecht AI Program: Why and How? IEEE Pervasive Computing 2020, 19, 63-68. DOI: 10.1109/MPRV.2020.2977741.

Lamar, A. R.; Urbaneski, V. The Interdisciplinary Education in University Courses in the Information Systems and Computer Sciences: Some Theoretical and Methodological Challenges. 2015 Ninth International Conference on Complex, Intelligent, and Software Intensive Systems, Santa Catarina, Brazil, 2015, pp. 412-415. DOI: 10.1109/CISIS.2015.59.

Pan, X.; Lin, X. Z. Research on Interdisciplinary Teaching Evaluation Model Based on Machine Learning. 2021 International Conference on Computer, Blockchain and Financial Development (CBFD), Nanjing, China, 2021, pp. 90-94. DOI: 10.1109/CBFD52659.2021.00025.

Uhl, E. (Hrsg.) Leitfaden für transdisziplinäre Projekte; Internationales Zentrum für Kultur- und Technikforschung, Universität Stuttgart, 2018.

White-Hancock, L. The Art and Science of Innovation: Transdisciplinary Work, Learning and Transgression; Springer International Publishing, 2023.

Hartmann, F.; Mietzner, D. Anwendungsmöglichkeiten von Künstlicher Intelligenz und Industrie 4.0 in der Textil- und Bekleidungsindustrie: Dokumentation zum Foresightprozess; Mittelstand 4.0-Kompetenzzentrum IT-Wirtschaft, Wildau, 2020.

Veit, D. Fibers: History, Production, Properties, Market; Springer Cham, 2022.

Bobeth, W. (Hrsg.) Textile Faserstoffe: Beschaffenheit und Eigenschaften; Springer Verlag Berlin, Heidelberg, 2013.

Ulrich, H. M. Handbuch der chemischen Untersuchung der Textilfaserstoffe; Springer Verlag Berlin, Heidelberg, 2013.

Schweizerische Vereinigung von Färbereifachleuten. Textilprüfung und Analysen: Faseranalysen, mechanisch-technologische Textilprüfungen, Farbstoffanalysen; Separata, Basel, 1975.

Alpaydin, E. Maschinelles Lernen; De Gruyter Oldenbourg, Istanbul, Turkey, 2022.

Sonnet, D. Neuronale Netze kompakt: Vom Perceptron zum Deep Learning; Springer Vieweg Wiesbaden, 2022.

Buxmann, P.; Schmidt, H. Künstliche Intelligenz: Mit Algorithmen zum wirtschaftlichen Erfolg; Springer Gabler Berlin, Heidelberg, 2021.

Paaß, G.; Hecker, D. Künstliche Intelligenz: Was steckt hinter der Technologie der Zukunft?; Springer Vieweg Wiesbaden, 2020.

Mitschke, N.. Konvolutionäre neuronale Netze in der industriellen Bildverarbeitung und Robotik; KIT Scientific Publishing, Karlsruhe, 2022.

Steps during the fiber analysis process

Downloads

Published

2024-04-07

How to Cite

Hellweg, L., Bulthaupt, J., Tabakovic, A., & Beer, M. (2024). Development of a transdisciplinary education concept to prepare textile technology students for dealing with AI. Communications in Development and Assembling of Textile Products, 5(1), 48–55. https://doi.org/10.25367/cdatp.2024.5.p48-55

Issue

Section

Peer-reviewed articles