Self-healing materials for potential use in textile and clothing applications

Authors

  • Alena Dannehl Niederrhein University of Applied Sciences, Faculty of Textile and Clothing Technologies, 41065, Moenchengladbach, Germany
  • Amelie Buhr Niederrhein University of Applied Sciences, Faculty of Textile and Clothing Technologies, 41065, Moenchengladbach, Germany
  • Angela Sanchez Leyton Niederrhein University of Applied Sciences, Faculty of Textile and Clothing Technologies, 41065, Moenchengladbach, Germany
  • Lennart Hellweg Niederrhein University of Applied Sciences, Faculty of Textile and Clothing Technologies, 41065, Moenchengladbach, Germany
  • Mathias Beer Niederrhein University of Applied Sciences, Faculty of Textile and Clothing Technologies, 41065, Moenchengladbach, Germany https://orcid.org/0000-0002-0025-1083
  • Lilia Sabantina FH Bielefeld https://orcid.org/0000-0002-1822-7954

DOI:

https://doi.org/10.25367/cdatp.2023.4.p27-41

Keywords:

Self-regeneration, self-healing materials, extrinsic and intrinsic methods, nanocomposites, smart textiles

Abstract

Self-regenerating, polymer-based textiles emulate living organisms’ ability to heal broken skin and other lesser injuries. To achieve this effect, either intrinsic or extrinsic methods of having polymeric compounds mend these damages can be employed. Depending on the method used, the handling and results of the self-regenerating effect differ. This allows for different areas of application. The focus of this paper is to discuss some of these potential textile applications as well as related research and developments in the area of self-healing materials.

References

Cremaldi, J. C.; Bhushan, B. Beilstein Bioinspired self-healing materials: lessons from nature. J. Nanotechnol. 2018, 9, 907-935. DOI:10.3762/bjnano.9.85.

Arida, I.; Ali, I.; Nasr, M.; El-Sherbiny, M. Electrospun polymer-based nanofiber scaffolds for skin regeneration. Journal of Drug Delivery Science and Technology 2021, 64, 102623. DOI: 10.1016/j.jddst.2021.102623.

Paras; Kumar, A. Anti-Wetting Polymeric Coatings. Encyclopedia of Materials: Plastics and Polymers 2021, 2, 786-795. DOI: 10.1016/B978-0-12-820352-1.00141-3

Ramesh, M.; Arun Ramnath, R.; Khan, A.; Khan, A., A., K.; Asiri, A. M. Electrically conductive self-healing materials: preparation, properties, and applications. In Self-Healing Composite Materials, Woodhead Publishing Series in Composites Science and Engineering, 2020; pp. 1-13. DOI: 10.1016/B978-0-12-817354-1.00001-6.

Joy, J.; George, E.; Anas, S.; Thomas, S. Applications of self-healing polymeric systems. In Self-Healing Polymer-Based Systems, Thomas, S.; Surendran, S., Eds.; Elsevier 2020; pp. 495-513. DOI: 10.1016/B978-0-12-818450-9.00016-7.

Van Tittelboom, K.; Van Belleghem, B.; Van den Heede, P.; Van Der Putten, J.; Callens, R.; Van Stappen, J.; Deprez, M.; Cnudde, V.; De Belie, N. Manual Application versus Autonomous Release of Water Repellent Agent to Prevent Reinforcement Corrosion in Cracked Concrete. Processes 2021, 9, 2101. DOI: 10.3390/pr9122101.

Hiemer, F.; Keßler, S.; Gehlen, C. Reinforcement corrosion behavior in bending cracks after short-time chloride exposure. Concrete Repair, Rehabilitation and Retrofitting IV. F. Dehn, H.D. Beushausen, M.G. Alexander, P. Moyo (Ed.).1 Ed. Proceedings of the 4th International Conference on Concrete Repair, Rehabilitation and Retrofitting (ICCRRR-4) 2015, pp. 23-24. Leipzig, Germany, 5-7 October 2015. DOI: 10.1201/b18972-15.

Hiemer, F.; Keßler, S.; Gehlen, C. Development of chloride induced reinforcement corrosion in cracked concrete after Application of a Surface Protection System. Concrete Solutions. Grantham, M., Ed.; Proceedings of the Concrete Solutions 6th International Conference on Concrete Repair 2016, Thessaloniki, Greece, 20-23 June 2016. DOI: 10.1201/9781315315607.

Keßler, S.; Hiemer, F.; Gehlen, C. Einfluss einer Betonbeschichtung auf die Mechanismen der Bewehrungkorrosion in gerissenem Stahlbeton. Beton Stahlbetonbau 2017, 112, 198-206. DOI: 10.1002/best.201700002.

Van Belleghem, B.; Kessler, S.; Heede, P.V.D.; Van Tittelboom, K.; De Belie, N. Chloride induced reinforcement corrosion behavior in self-healing concrete with encapsulated polyurethane. Cem. Concr. Res. 2018, 113, 130-139. DOI: 10.1016/j.cemconres.2018.07.009.

Fangueiro, R.; Soutinho, F. Textile structures. In Fibrous and Composite Materials for Civil Engineering Applications, Woodhead Publishing Series in Textiles, 2011, pp. 62-91. DOI: 10.1533/9780857095583.1.62.

Ramesh, S.; Khan, S.; Park, Y.; Ford, E.; Menegatti, S.; Genzer, J. Self-healing and repair of fabrics: A comprehensive review of the application toolkit. Materials Today 2022, 54, 90-109. DOI: 10.1016/j.mattod.2021.11.016.

Cseke, A.; Haines-Gadd, M.; Mativenga, P.; Charnley, F.; Thomas, B.; Downs, R.; Perry, J. Life cycle assessment of self-healing products. CIRP Journal of Manufacturing Science and Technology 2022, 37, 489-498. DOI: 10.1016/j.cirpj.2022.02.013.

Cseke, A.; Haines-Gadd, M.; Mativenga, P.; Charnley, F.; Thomas, B.; Perry, J. Modelling of environmental impacts of printed self-healing products. Science of The Total Environment 2022, 807(2), 150780. DOI: 10.1016/j.scitotenv.2021.150780.

Balitaan, J., N. I.; Hsiao, C., D.; Yeh, J., M. Innovation inspired by nature: Biocompatible self-healing injectable hydrogels based on modified-β-chitin for wound healing. International Journal of Biological Macromolecules 2020, 162, 723-736. DOI: 10.1016/j.ijbiomac.2020.06.129.

Haines-Gadd, M.; Charnley, F.; Encinas-Oropesa, A. Self-healing materials: A pathway to immortal products or a risk to circular economy systems? Journal of Cleaner Production 2021, 315, 128193. DOI: 10.1016/j.jclepro.2021.128193.

Wen, N.; Song, T.; Ji, Z.; Jiang, D.; Wu, Z.; Wang, Y.; Guo, Z. Recent advancements in self-healing materials: Mechanicals, performances and features. Reactive and Functional Polymers 2021, 168, 105041. DOI: 10.1016/j.reactfunctpolym.2021.105041.

Zhang, Y.; Chen, J.; Zhang, G.; Xv, J.; Xv, J.; Hu, Y.; Guo, H.; Guo, F.; Fu, J. J.; Jiang, W. Mechanically robust, highly adhesive and autonomously low-temperature self-healing elastomer fabricated based on dynamic metal − ligand interactions tailored for functional energetic composites. Chemical Engineering Journal 2021, 425, 130665. DOI: 10.1016/j.cej.2021.130665.

Gosh, S.K. Self-healing Materials: Fundamentals, Design Strategies and Applications. In Self-Healing Materials, Ghosh, S. K., Ed.; WILEY-VCH Verlag GmbH & Co. KGaA, 2009, pp. 1-28. DOI: 10.1002/9783527625376.CH1.

Miyake, S.; Nagahama, S.; Sugano, S. Development of self-healing linear actuator unit using thermoplastic resin, Advanced Robotics 2019, 33(23), 1235-1247. DOI: 10.1080/01691864.2019.1684363.

Utrera-Barrios, S.; Verdejo, R.; López-Manchado, M. A.; Hernández Santana, M. Evolution of self-healing elastomers, from extrinsic to combined intrinsic mechanisms: a review. Mater. Horiz. 2020, 7, 2882-2902. DOI: 10.1039/D0MH00535E.

Mol, J.M.C.; Garcia, S.J.; Gonzalez-Garcia, Y.; Hughes, A.E. Self healing corrosion protective coatings. In Self Healing Materials: Pioneering Research in the Netherlands. Van der Zwaag, S.; Brinkman, E., Eds.; IOS Press, 2015, pp. 207-217. DOI: 10.3233/978-1-61499-514-2-207.

Nik Md Noordin Kahar, N.N.F.; Osman, A.F.; Alosime, E.; Arsat, N.; Mohammad Azman, N.A.; Syamsir, A.; Itam, Z.; Abdul Hamid, Z.A. The Versatility of Polymeric Materials as Self-Healing Agents for Various Types of Applications: A Review. Polymers 2021, 13, 1194. DOI: 10.3390/polym13081194.

Van Tittelboom, K.; Van den Heede, P.; De Belie, N. Self-healing concrete with encapsulated polyurethane. In Civil and Structural Engineering, Eco-Efficient Repair and Rehabilitation of Concrete Infrastructures, Woodhead Publishing Series in Civil and Structural Engineering, 2018, 429-466. DOI: 10.1016/B978-0-08-102181-1.00016-2.

Koochaki, M.S.; Khorasani, S.N.; Neisiany, R.E. A highly responsive healing agent for the autonomous repair of anti-corrosion coatings on wet surfaces. In operando assessment of the self-healing process. J. Mater. Sci. 2021, 56, 1794-1813. DOI: 10.1007/s10853-020-05332-9.

Zhu, D. Y.; Rong, M. Z.; Zhang, M. Q. Self-healing polymeric materials based on microencapsulated healing agents: From design to preparation. Progress in Polymer Science 2015, 49-50, 175-220. DOI: 10.1016/j.progpolymsci.2015.07.002.

Gu, J.; Yang, X.; Li, C.; Kou, K. Synthesis of cyanate ester microcapsules via solvent evaporation technique and its application in epoxy resins as a healing agent. Ind. Eng. Chem. Res 2016, 55, 10941-10946. DOI: 10.1021/acs.iecr.6b03093.

Garcia, S. J. Effect of polymer architecture on the intrinsic self-healing character of polymers. European Polymer Journal 2014, 53, 118-125. DOI: 10.1016/j.eurpolymj.2014.01.026.

Smojver, I.; Ivančević, D.; Brezetić, D. Modelling of micro-damage and intrinsic self-healing in unidirectional CFRP composite structures. Composite Structures 2022, 286, 115266. DOI: 10.1016/j.compstruct.2022.115266.

Geitner, R.; Kötteritzsch, J.; Siegmann, M.; Bocklitz, T. W.; Hager, M. D.; Schubert, U. S.; Grafe, S.; Dietzek, B.; Schmitt, M.; Popp, J. Two-dimensional Raman correlation spectroscopy reveals molecular structural changes during temperature-induced self-healing in polymers based on the Diels-Alder reaction. Phys. Chem. Chem. Phys. 2015, 17, 22587-22595. DOI: 10.1039/C5CP02151K.

Imato, K.; Takahara, A.; Otsuka, H. Self-healing of a cross-linked polymer with dynamic covalent linkages at mild temperature and evaluation at macroscopic and molecular levels. Macromolecules 2015, 48, 5632-5639. DOI: 10.1021/acs.macromol.5b00809.

Yang, S.; Wang, S.; Du, X.; Du, Z.; Cheng, X.; Wang, H. Mechanically robust self-healing and recyclable flame-retarded polyurethane elastomer based on thermoreversible crosslinking network and multiple hydrogen bonds. Chemical Engineering Journal 2020, 391, 123544. DOI: 10.1016/j.cej.2019.123544.

Lin, B.; Wang, J.; Zhang, H.; Wang, Y.; Zhang, H.; Tang, J.; Hou, J.; Zhang, H.; Sun, M. Self-healing performance of ethyl-cellulose based supramolecular gel coating highly loaded with different carbon chain length imidazoline inhibitors in NaCl corrosion medium. Corrosion Science 2022, 197, 110084. DOI: 10.1016/j.corsci.2022.110084.

Thajudin, N. L. N.; Zainol, M. H.; Shuib, R. K. Intrinsic room temperature self-healing natural rubber based on metal thiolate ionic network. Polymer Testing 2021, 93, 106975. DOI: 10.1016/j.polymertesting.2020.106975.

Das, M.; Naskar, K. Development, characterization and applications of a unique self-healable elastomer: Exploring a facile metal-ligand interaction. Polymer 2021, 237, 124373. DOI: 10.1016/j.polymer.2021.124373.

Das, R.; Melchior, C.; Karumbaiah, K. M. Self-healing composites for aerospace applications. Self-healing composites for aerospace applications. In Advanced Composite Materials for Aerospace Engineering; Rana, S.; Fangueiro, R., Eds.; Woodhead Publishing, 2016; pp. 333-364. DOI:10.1016/B978-0-08-100037-3.00011-0.

Xiang, G.; Tu, J.; Xu, H.; Ji, J.; Liang, L.; Li, H.; Chen, H.; Tian, J.; Guo, X. Preparation and Self-Healing Application of Isocyanate Prepolymer Microcapsules. Coatings 2022, 12, 166. DOI: 10.3390/coatings12020166

Zhang, B.; Fan, H.; Xu, W.; Duan, J. Thermally triggered self-healing epoxy coating towards sustained anti-corrosion. Journal of Materials Research and Technology 2022, 17, 2684-2689. DOI: 10.1016/j.jmrt.2022.02.041.

Li, Y.; Zhang, D.; Li, J.; Lu, J.; Zhang, Z.; Gao, L. Application of hierarchical bonds for construction an anti-corrosion coating with superior intrinsic self-healing function, Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022, 639,128388. DOI: 10.1016/j.colsurfa.2022.128388.

Li, Z.; Kang, W.; Yang, H.; Zhou, B.; Jiang, H.; Liu, D.; Jia, H.; Wang, J. Advances of supramolecular interaction systems for improved oil recovery (IOR). Advances in Colloid and Interface Science 2022, 301, 102617. DOI: 10.1016/j.cis.2022.102617.

Gadwal, I. A Brief Overview on Preparation of Self-Healing Polymers and Coatings via Hydrogen Bonding Interactions. Macromol 2021, 1, 18-36. DOI: 10.3390/macromol1010003.

Du, Y.; Qiu, W.Z.; Wu, Z.L.; Ren, P.F.; Zheng, Q.; Xu, Z.K. Water-Triggered Self-Healing Coatings of Hydrogen-Bonded Complexes for High Binding Affinity and Antioxidative Property. Adv. Mater. Interfaces 2016, 3(15), 1600167. DOI: 10.1002/admi.201600167.

Latif, S.; Amin, S.; Haroon, S. S.; Sajjad, I. A. Self-healing materials for electronic applications: an overview, Mater. Res. Express 2019, 6, 062001. DOI: 10.1088/2053-1591/ab0f4c.

Shah, K.W.; Huseien, G.F. Biomimetic Self-Healing Cementitious Construction Materials for Smart Buildings. Biomimetics 2020, 5, 47. DOI: 10.3390/biomimetics5040047.

Subramanian, H.; Mulay, S.S. Constitutive modelling of plastically deformable self-healing materials, Mechanics of Materials 2022, 168, 104272. DOI: 10.1016/j.mechmat.2022.104272.

Joseph, J.P.; Singh, A.; Pal, A. Molecular Design Approaches to Self-healing Materials from Polymer and its Nanocomposites. In Smart Polymer Nanocomposites, Ponnamma, D., Sadasivuni, K., Cabibihan, J.J., Al-Maadeed, M.A., Eds.; Springer Series on Polymer and Composite Materials, Springer, Cham, 2017, pp. 181-218. DOI: 10.1007/978-3-319-50424-7_7.

Dahlke, J.; Zechel, S.; Hager, M. D.; Schubert, U. S. How to Design a Self‐Healing Polymer: General Concepts of Dynamic Covalent Bonds and Their Application for Intrinsic Healable Materials. Advanced Materials Interfaces 2018, 5(17), 1800051. DOI: 10.1002/admi.201800051.

Cseke, A.; Haines-Gadd, M.; Mativenga, P.; Charnley, F. A framework for assessing self-healing products. Procedia CIRP 2020, 90, 473-476. DOI: 10.1016/J.PROCIR.2020.01.061.

European Commission, Directorate-General for the Information Society and Media, Towards an overall measurement methodology of the carbon and energy footprints of the ICT sector, Publications Office 2013. Retrieved from: https://data.europa.eu/doi/10.2759/98282 (accessed 2022-07-01).

Kuhl, J.; Krause, D. Strategies for Customer Satisfaction and Customer Requirement Fulfillment within the Trend of Individualization. Procedia CIRP 2019, 84, 130-135. DOI: 10.1016/j.procir.2019.04.278.

Khiavi, A. K.; Asadi, M. Effect of specific heat capacity of aggregates and nano-graphite on self-healing of hot mix asphalt under microwave radiation. Construction and Building Materials 2022, 328, 127091. DOI: 10.1016/j.conbuildmat.2022.127091.

Zhu, J.; Shi, D. A possible self-healing mechanism in damaged graphene by heat treatment. Computational Materials Science 2013, 68, 391-395. DOI: 10.1016/j.commatsci.2012.10.041.

Yang, Z.; Li, H.; Li, C.; Lai, X.; Zeng, X. Conductive and room-temperature self-healable polydimethylsiloxane-based elastomer film with ridge-like microstructure for piezoresistive pressure sensor. Chemical Engineering Journal 2022, 430, 133103. DOI: 10.1016/j.cej.2021.133103.

Das, R.; Melchior, C.; Karumbaiah, K. M. Self-healing composites for aerospace applications. In Advanced Composite Materials for Aerospace Engineering, Elsevier, 2016, pp. 333-364. DOI: 10.1016/B978-0-08-100037-3.00011-0.

Du, J.; Wang, Z.; Wei, Z.; Yao, J.; Song, H. An environmental friendly self-healing coating with Silane/Ce-ZSM-5 zeolite structure for corrosion protection of aluminum alloy. Surface and Coatings Technology 2022, 436, 128290. DOI: 10.1016/j.surfcoat.2022.128290.

Devasia, R.; Painuly, A.; Devapal, D.; Sreejith, K. J. Continuous fiber reinforced ceramic matrix composites. In Composites Science and Engineering, Fiber Reinforced Composites, Woodhead Publishing Series in Composites Science and Engineering, 2021, pp. 669-751. DOI: 10.1016/B978-0-12-821090-1.00022-3.

Das, R.; Melchior, C.; Karumbaiah, K.M. Self-healing composites for aerospace applications. In Advanced Composite Materials for Aerospace Engineering, Rana, S.; Fangueiro, R., Eds.; Woodhead Publishing, 2016, pp. 333-364. DOI: 10.1016/B978-0-08-100037-3.00011-0.

Kumar, S.; Murthy Reddy, K. V. V. S.; Kumar, A.; Rohini Devi, G. Development and characterization of polymer-ceramic continuous fiber reinforced functionally graded composites for aerospace application. Aerospace Science and Technology 2013, 26(1), 185-191. DOI: 10.1016/j.ast.2012.04.002.

Deng, J.; Xue, P.; Yin, Q. Z.; Lu, T. J.; Wang, X. W. A three-dimensional damage analysis framework for fiber-reinforced composite laminates. Composite Structures 2022, 286, 115313, DOI: 10.1016/j.compstruct.2022.115313.

Naeimirad, M.; Abuzade, R. A.; Babaahmadi, V.; Neisiany, R. E.; Brüll, R.; Pursche, F. Hollow fiber reinforced polymer composites. In Composites Science and Engineering, Fiber Reinforced Composites, Woodhead Publishing Series in Composites Science and Engineering, 2021, pp. 461-477. DOI: 10.1016/B978-0-12-821090-1.00001-6.

Pernigoni, L.; Lafont, U.; Grande, A.M. Self-healing materials for space applications: overview of present development and major limitations. CEAS Space J. 2021, 13, 341-352. DOI: 10.1007/s12567-021-00365-5.

Huang, J.; Guo, L.; Zhong, L. Synergistic healing mechanism of self-healing ceramics coating. Ceramics International 2022, 48(5), 6520-6527. DOI: 10.1016/j.ceramint.2021.11.198.

Yang, H.; Jin, K.; Wang, H.;Fan, Z.; Zhang, T.; Liu, Z.; Cai, Z. Facile preparation of a high-transparency zwitterionic anti-fogging poly(SBMA-co-IA) coating with self-healing property. Progress in Organic Coatings 2022, 165, 106764. DOI: 10.1016/j.porgcoat.2022.106764.

Guo, M.; Li, W.; Han, N.; Wang, J.; Su, J.; Li, J.; Zhang, X. Novel Dual-Component Microencapsulated Hydrophobic Amine and Microencapsulated Isocyanate Used for Self-Healing Anti-Corrosion Coating. Polymers 2018, 10, 319. DOI: 10.3390/polym10030319.

Briou, B.; Ameduri, B.; Boutevin, B. Trends in Diels Alderin Polymer Chemistry. Chem. Soc. Rev. 2021, 50, 11055-11097. DOI: 10.1039/D0CS01382J.

Mojica, M.; Méndez, F.; Alonso, J. A. Growth of Fullerene Fragments Using the Diels-Alder Cycloaddition Reaction: First Step towards a C60 Synthesis by Dimerization. Molecules 2013, 18, 2243-2254. DOI: 10.3390/molecules18022243.

Soto-Delgado, J.; Aizman, A.; Contreras, R.; Domingo, L. R. On the Catalytic Effect of Water in the Intramolecular Diels–Alder Reaction of Quinone Systems: A Theoretical Study. Molecules 2012, 17, 13687-13703. DOI: 10.3390/molecules171113687.

Camps, P.; Gómez, T.; Lozano, D.; Calvet, T.; Font-Bardia, M. On the Reaction of 1,3-Diphenylisobenzofuran and (2-Iodoethynyl)(phenyl)iodonium Triflate. A Unique Case of Oxygen Transfer from the Diels-Alder Adduct to the Diene. Molecules 2012, 17, 8795-8803. DOI: 10.3390/molecules17088795.

Dello Iacono, S.; Martone, A.; Amendola, E. Diels-Alder Chemistry to Develop Self-Healing Epoxy Resins and Composites Thereof. In Paint and Coatings Industry, Yilmaz, F., Ed.; IntechOpen, 2019. DOI: 10.5772/intechopen.81360.

Zolghadr, M.; Shakeri, A.; Zohuriaan-Mehr, M. J.; Salimi, A. Self-healing semi-IPN materials from epoxy resin by solvent-free furan-maleimide Diels-Alder polymerization, J. Appl. Polym. Sci. 2019, 136, 48015. DOI: 10.1002/app.48015.

Ehrhardt, D.; Mangialetto, J.; Bertouille, J.; Van Durme, K.; Van Mele, B.; Van den Brande, N. Self-Healing in Mobility-Restricted Conditions Maintaining Mechanical Robustness: Furan–Maleimide Diels-Alder Cycloadditions in Polymer Networks for Ambient Applications. Polymers 2020, 12, 2543. DOI: 10.3390/polym12112543.

Zechel, S.; Geitner, R.; Abend, M. Intrinsic self-healing polymers with a high E-modulus based on dynamic reversible urea bonds. NPG Asia Mater 2017, 9, e420. DOI: 10.1038/am.2017.125.

Lee, M. Prospects and Future Directions of Self-Healing Fiber-Reinforced Composite Materials. Polymers 2020, 12, 379. DOI: 10.3390/polym12020379h.

Heyse, P.; De Vilder, I.; Vanneste, M. Smart durable and self-healing textile coatings. In Active Coatings for Smart Textiles, Hu, J.L., Ed.; Woodhead Publishing Series in Textiles, Woodhead Publishing, 2016, pp. 55-80. DOI: 10.1016/B978-0-08-100263-6.00004-6.

Kim, H.; Yarin, A.; Lee, M. Self-healing corrosion protection film for marine environment. Composites 2019, 182, 107598. DOI: 10.1016/j.compositesb.2019.107598.

Kalista, S. J.; Pflugc, J. R.; Varleyd, R. J. Effect of ionic content on ballistic self-healing in EMAA copolymers and ionomers, Polym. Chem. 2013, 4, 4910-4926. DOI: 10.1039/C3PY00095H.

Li, D.; Guo, Z. Versatile superamphiphobic cotton fabrics fabricated by coating with SiO2/FOTS, Applied Surface Science 2017, 426, 271-278. DOI: 10.1016/j.apsusc.2017.07.150.

Daniels, G.; Petrovich, P. Conformable Self-Healing Ballistic Armor. Patent No. US 7,966,923 B2, 2011, filed June 28, 2007, issued June 28, 2011.

Andersson, H.M.; Keller, M.W.; Moore, J.S.; Sottos, N.R.; White, S. Self Healing Polymers and Composites. In Self Healing Materials. van der Zwaag, S. (ed.); Springer Series in Materials Science, 2007; Springer, Dordrecht. DOI: 10.1007/978-1-4020-6250-6_2.

Pena-Francesch, A.; Jung, H.; Demirel, M.; Sitti,M. Biosynthetic self-healing materials for soft machines. Nat. Mater. 2020, 19, 1230-1235. DOI: 10.1038/s41563-020-0736-2.

Gaddes, D.; Jung, H.; Pena-Francesch, A.; Dion, G.; Tadigadapa, S.; Dressick, W.J.; Demirel, M.C. Self-Healing Textile: Enzyme Encapsulated Layer-by-Layer Structural Proteins. ACS Appl. Mater. Interfaces 2016, 8, 31, 20371-20378. DOI: 10.1021/acsami.6b05232.

Zahid, M.; Zych, A.; Dussoni, S.; Spallanzani, G.; Donno, R.; Maggiali, M.; Athanassiou, A. Wearable and self-healable textile-based strain sensors to monitor human muscular activities. Composites Part B: Engineering 2021, 220, 108969. DOI: 10.1016/j.compositesb.2021.108969.

Séon, L.; Lavalle, P.; Schaaf, P.; Boulmedais, F. Polyelectrolyte Multilayers: A Versatile Tool for Preparing Antimicrobial Coatings. Langmuir 2015, 31 (47), 12856-12872. DOI: 10.1021/acs.langmuir.5b02768.

Gomes, A. P.; Mano, J. F.; Queiroz, J. A.; Gouveia, I. C. Incorporation of antimicrobial peptides on functionalized cotton gauzes for medical applications. Carbohydr. Polym. 2015, 127, 451-461. DOI: 10.1016/j.carbpol.2015.03.089.

Irzmańska, E.; Bacciarelli-Ulacha, A.; Adamus-Włodarczyk, A.; Strąkowska, A. The effects of textile reinforcements on the protective properties of self-healing polymers intended for safety gloves. Textile Research Journal 2020, 90(17-18), 1974-1986. DOI: 10.1177/0040517520904374.

Provin, A. P.; De Aguiar Dutra, A. R.; Aguiar de Sousa, I. C.; Gouveia, S.; Vieira Cubas, A. L. Circular economy for fashion industry: Use of waste from the food industry for the production of biotextiles, Technological Forecasting and Social Change 2021, 169, 120858. DOI: 10.1016/j.techfore.2021.120858.

Brydges, T. Closing the loop on take, make, waste: Investigating circular economy practices in the Swedish fashion industry. Journal of Cleaner Production 2021, 293, 126245. DOI: 10.1016/j.jclepro.2021.126245.

Hole, G.; Hole, A.S. Improving recycling of textiles based on lessons from policies for other recyclable materials: A minireview, Sustainable Production and Consumption 2020, 23, 42-51. DOI: 10.1016/j.spc.2020.04.005.

Laitala, K.; Boks, C.; Klepp, I. Making Clothing Last: A Design Approach for Reducing the Environmental Impacts. International Journal of Design 2015, 9, 93-107. Retrieved from: http://www.ijdesign.org/index.php/IJDesign/article/view/1613 (accessed on 01.07.2022).

Gupta, R.; Kushwaha, A.; Dave, D.; Mahanta, N. R. Waste management in fashion and textile industry: Recent advances and trends, life-cycle assessment, and circular economy. In Emerging Trends to Approaching Zero Waste, Elsevier, 2022, pp. 215-242. DOI: 10.1016/B978-0-323-85403-0.00004-9.

Islam, S. Waste management strategies in fashion and textiles industry: Challenges are in governance, materials culture and design-centric. In The Textile Institute Book Series, Waste Management in the Fashion and Textile Industries, Woodhead Publishing, 2021, pp. 275-293. DOI: 10.1016/B978-0-12-818758-6.00015-6.

Weaver D. You can poke a hole in this jacket and it will repair itself. Insider April 2017. Retrieved from: https://www.businessinsider.com/self-healing-jacket-nano-cure-tech-imperial-motion-2017-3?r=DE&IR=T (accessed on 01.06.2022).

Imperial Motion. How Nano Cure Tech works. Video. (27 June 2018). Retrieved from https://www.youtube.com/watch?v=WGsD5SXzRjo&t=0s (accessed on 05.06.2022).

Ward, W. Design of a Lightweight Camping Cot Using Carbon Fiber Tent Poles and Ripstop Nylon. Massachusetts Institute of Technology (MIT) 2006, Massachusetts, United States. Retrieved from https://dspace.mit.edu/bitstream/handle/1721.1/36686/77537067-MIT.pdf?sequence=2&isAllowed=y (accessed on 04.06.2022).

Imperial Motion. Nano Cure Tech. Retrieved from https://imperialmotion.com/collections/nano-cure-tech (accessed on 03.05.2022).

Ma, Y.; Zou, Y.; Zhang, Z. Luminescent and hydrophobic textile coatings with recyclability and self-healing capability against both chemical and physical damage. Cellulose 2010, 27, 561–573. https://doi.org/10.1007/s10570-019-02819-w.

CompPair 2022. Retrieved from: https://comppair.ch/products/ (accessed on 21.03.2022).

SAS Nanotechnologies 2022. Retrieved from: https://sasnanotechnologies.com/ (accessed 21.03.2022).

Tandem Repeat 2022. Retrieved from: http://www.tandemrepeat.com/#welcome (accessed 21.03.2022).

Autonomic Materials 2022. Retrieved from: https://www.autonomicmaterials.com/ (accessed 21.03.2022).

Kessler, M. R. Self-healing: A new paradigm in materials design. Proceedings of the Institution of Mechanical Engineers. Part G: Journal of Aerospace Engineering 2007, 221(4), 479-495. DOI: 10.1243/09544100JAERO172

Brown, E.N.; White, S.R.; Sottos, N.R. Microcapsule induced toughening in a self-healing polymer composite. Journal of Materials Science 2004, 39, 1703-1710. DOI: 10.1023/B:JMSC.0000016173.73733.dc.

Schematic representation of the interwoven threads during perforation of the fabric, which are pressed apart at the stitching point

Downloads

Published

2023-02-08

How to Cite

Dannehl, A., Buhr, A., Sanchez Leyton, A. ., Hellweg, L., Beer, M., & Sabantina, L. (2023). Self-healing materials for potential use in textile and clothing applications. Communications in Development and Assembling of Textile Products, 4(1), 27–41. https://doi.org/10.25367/cdatp.2023.4.p27-41

Issue

Section

Peer-reviewed articles