New testing device for air permeability
DOI:
https://doi.org/10.25367/cdatp.2023.4.p164-170Keywords:
testing device, air permeability, air flow, EN ISO 9237Abstract
Air permeability is used to characterize textile fabrics with respect to their usability as a garment or filter, airbag or parachute. It depends on the fabric’s porosity, air voids in the fabric, yarn specifications, thickness and other parameters, making it hard to calculate it reliably from other parameters. At the same time, measuring air permeability requires relatively expensive and complex equipment that cannot simply be built by everybody. Here, we suggest a simple device, which can be built from inexpensive components and correlates air permeability to a time measurement. We show that these values are highly correlated with the results gained by the frequently used standard EN ISO 9237.
References
Clayton, F. H. The measurement of the air permeability of fabrics. The Journal of The Textile Institute Transactions 1935, 26, T171-T186. DOI: https://doi.org/10.1080/19447023508661651.
Barr, G. The measurement of the porosity of textiles. Journal of the Textile Institute Proceedings 1932, 23, P206-P213. DOI: https://doi.org/10.1080/19447013208687373.
Schiefer, H. F.; Boyland, P. M. Improved instrument for measuring the air permeability of fabrics. Journal of Research of the National Bureau of Standards 1942, 28, 637-642. DOI: https://doi.org/10.1080/19447013208687373.
Rainard, L. W. Air permeability of fabrics, II. Textile Research Journal 1947, 17, 167-170. DOI: https://doi.org/10.1177/004051754701700304.
Goodings, A. C. Air flow through textile fabrics. Textile Research Journal 1964, 34, 713-724. DOI: https://doi.org/10.1177/0040517564034008
Tang, X. N.; Jeong, C.-H.; Yan, X. Prediction of sound absorption based on specific airflow resistance and air permeability of textiles. The Journal of the Acoustical Society of America 2018, 144, EL100. DOI: https://doi.org/10.1121/1.5049708.
Kim, W. D.; Pyo, S. J.; Kim, M.-O.; Oh, Y. K.; Kwon, D.-S.; Kim, J. B. Humidity-resistant triboelectric energy harvester using electrospun PVDF/PU nanofibers for flexibility and air permeability. Nanotechnology 2019, 30, 275401. DOI: https://doi.org/10.1088/1361-6528/ab0cd5.
Khalil, A.; Fouda, A.; Tesinova, P.; Eldeeb, A. S. Comprehensive assessment of the properties of cotton single jersey knitted fabrics produced from different lycra states. AUTEX Res. J. 2021, 21, 71-78. DOI: https://doi.org/10.2478/aut-2020-0020.
Sakthivel, S.; Senthil Kumar, B. Studies on influence of bonding methods on sound absorption characteristic of polyester/cotton recycled nonwoven fabrics. Applied Acoustics 2021, 174, 107749. DOI: https://doi.org/10.1016/j.apacoust.2020.107749.
Kawabata, S. Method and apparatus for measuring air permeability of fiber material such as cloth or nonwoven fabric of every kind. JPH056133B2, 1987.
Wang, Y. W.; Pan, J. Q.; Liu, H. Y.; Liu, K.; Huang, F. H.; Niu, S. X.; Cheng, G. Y.; Wang, D. D. Test equipment used for air circulation performance of diesel soot particulate filter. CN108019263A, 2018.
Wagner, C. G.; Cain D. E. Method and apparatus for determining permeability and thickness of refractory coatings on foundry molds and cores. US4366703A, 1983.
Lyu, L. X.; Daichi, K.; Yang, Y.; Xu, T. Gas permeability detecting device and determination method for tissue engineering porous scaffold. CN106596374A, 2017.
KDIW 2004. Available online: https://www.vpam.eu/pruefrichtlinien/aktuell/kdiw-2004/ (accessed January 14, 2023).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Lilia Sabantina, Andrea Ehrmann
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.