Suitability of common single circuit boards for sensing and actuating in smart textiles


  • Guido Ehrmann Virtual Institute of Applied Research on Advanced Materials (VIARAM)
  • Andrea Ehrmann Bielefeld University of Applied Sciences, Faculty of Engineering and Mathematics, Bielefeld, Germany



Microcontroller, Single-board computer, Single circuit board, Arduino, RaspberryPi, Smart textiles, Smart clothes


Single-board computers and microcontrollers such as Raspberry Pi or Arduino are nowadays used in a broad range of applications. Their relatively low power consumption and low price, compact dimensions and relative ease to program them make them suitable for diverse areas of measuring and controlling various parameters. In the textile area, however, such single-board computers are still less often used than in other projects, in spite of their aforementioned advantages in comparison to other solutions. Here we give an overview of the differences between single-board computers and single-board microcontrollers in general, compare different versions and give examples which projects are reported in the scientific literature, in design or in the maker scene, enabling researchers, designers and makers to decide which future projects necessitate which single circuit boards.


Staffová, M.; Kucera, F.; Tochácek, J.; Dzik, P.; Ondreás, F.; Jancár, J. Insight into color change of reversible thermochromic systems and their incorporation into textile coating. J. Appl. Polymer Sci., 2021, 138 (4), 49724. DOI: 10.1002/app.49724.

Periyasami, A. P.; Vikova, M.; Vik, M. A review of photochromism in textiles and its measurement. Textile Progress, 2017, 49 (2), 53-136. DOI: 10.1080/00405167.2017.1305833.

Issatayeva, A.; Beisenova, A.; Tosi, D.; Molardi, C. Fiber-optic based smart textiles for real-time monitoring of breathing rate. Sensors, 2020, 20 (12), 3408. DOI: 10.3390/s20123408.

Tang, S. L. P.; Stylios, G. K. An overview of smart technologies for clothing design and engineering. Int. J. Clothing Sci. Technol., 2006, 18 (2), 108-128. DOI: 10.1108/09556220610645766.

Trummer, S.; Ehrmann, A.; Büsgen, A. Development of underwear with integrated 12 channel ECG for men and women. AUTEX Res. J., 2017, 17 (4), 344-349. DOI: 10.1515/aut-2017-0008.

Fafenrot, S.; Silbermann, P.; Grimmelsmann, N.; Assig, J.; Ehrmann, A. Integration of solar cells and other electronic components into clothes. Kyosev, Y.; Mahltig, B.; Schwarz-Pfeiffer, A. (eds.) Narrow and Smart Textiles, 2017, 229-239. Springer, Cham. DOI: 10.1007/978-3-319-69050-6_20.

Schwarz, A.; van Langenhove, L.; Guermonprez, P.; Deguillemont, D. A roadmap on smart textiles. Textile Progress, 2010, 42 (2), 99-180. DOI: 10.1080/00405160903465220.

Catrysse, M.; Puers, R.; Hertleer, C.; van Langenhove, L.; van Egmond, H.; Matthys, D. Towards the integration of textile sensors in a wireless monitoring suit. Sens. Act. A Phys., 2004, 114 (2-3), 302-311. DOI: 10.1016/j.sna.2003.10.071.

Langereis, G. R.; Bouwstra, S.; Chen, W. Sensors, actuators and computing systems for smart textiles for protection. In: Chapman, R. A. (Ed.) Smart textiles for protection, 2013, 190-213. Woodhead Publishing Series in Textiles. DOI: 10.1533/9780857097620.1.190.

Kaynak, A.; Zolfagharian, A. Functional polymers in sensors and actuators: fabrication and analysis. Polymers, 2020, 12(7), 1569. DOI: 10.3390/polym12071569.

Jost, K.; Dion, G.; Gogotsi, Y. Textile energy storage in perspective. J. Mater. Chem. A, 2014, 2, 10776-10787. DOI: 10.1039/C4TA00203B.

Heo, J. S.; Eom, J.; Kim, Y.-H.; Park, S. K. Recent progress of textile-based wearable electronics: a comprehensive review of materials, devices, and applications. Small, 2018, 14 (3), 1703034. DOI: 10.1002/smll.201703034.

Ehrmann, A.; Blachowicz, T. Recent coating materials for textile-based solar cells. AIMS Mater. Sci., 2019, 6 (2), 234-251. DOI: 10.3934/matersci.2019.2.234.

Bonderover, E.; Wagner, S. A woven inverter circuit for e-textile applications. IEEE Electron Device Letters, 2004, 25 (5), 295-297. DOI: 10.1109/LED.2004.826537.

Ojuroye, O.; Torah, R.; Beeby, S. Modified PDMS packaging of sensory e-textile circuit microsystems for improved robustness with washing. Microsystems Technologies, 2019.

Kiourti, A.; Lee, C.; Volakis, J. L. Fabrication of textile antennas and circuits with 0.1 mm precision. IEEE Antennas and Wireless Propagation Letters, 2015, 15, 151-153. DOI: 10.1109/LAWP.2015.2435257

Del-Rio-Ruiz, R.; Lopez-arde, J.-M.; Legarda, J. Planar textile off-body communication antennas: a survey. Electronics, 2019, 8 (6), 714. DOI: 10.3390/electronics8060714.

Schwarz-Pfeiffer, A.; Obermann, M.; Weber, M. O.; Ehrmann, A. Smarten up garments through knitting. IOP Conf. Series Mater Sci. Eng., 2016, 141, 012008. DOI: 10.1088/1757-899X/141/1/012008.

Coppedè, N.; Giannetto, M.; Villani, M.; Lucchini, V.; Battista, E.; Careri, M.; Zappettini, A. Ion selective textile organic electrochemical transistor for wearable sweat monitoring. Organic Electronics, 2020, 78, 105579. DOI: 10.1016/j.orgel.2019.105579.

Kim, S. J.; Kim, H. J.; Ahn, J. T.; Hwang, D. K.; Ju, H. S.; Park, M.-C.; Yang, H. C.; Kim, S. H.; Jang, H. W.; Lim, J. A. A new architecture for fibrous organic transistors based on a double-stranded assembly of electrode microfibers for electronic textile applications. Adv. Mater., 2019, 31 (23), 1900564.

Owyeung, R. E.; Terse-Thakoor, Tr.; Nejad, H. R.; Panzer, M. J.; Sonkusale, S. R. Highly flexible transistor threads for all-thread based integrated circuits and multiplexed diagnostics. ACS Appl. Mater. Interfaces, 2019, 11 (34), 31096-31104. DOI: 10.1021/acsami.9b09522.

RaspberryPI models comparison. Available online: (accessed on December 5, 2020).

BerryBase, The Maker Shop. By Sertronics GmbH, Berlin, Germany. Available online: (accessed on December 5, 2020).

Arduino Products. Available online: (accessed on December 5, 2020).

Joy-it Digispark Mikrocontroller. Available online: (accessed on December 5, 2020).

Arduino vs. Raspberry Pi: Mikrocontroller und Einplatinencomputer im Vergleich. Available online: (accessed on December 5, 2020).

Strobel, C. Arduino vs. Raspberry Pi: Wo liegt der Unterschied? Techtag 12/08/2016. Available online: (accessed on December 5, 2020).

Di Justo, P. Raspberry Pi or Arduino Uno? One Simple Rule to Choose the Right Board. Make, Dec. 4, 2015. Available online: (accessed on December 5, 2020).

Pounder, L. Raspberry Pi vs Arduino: Which board is best? Tom’s Hardware, July 10, 2020. Available online: (accessed December 5, 2020).

Lin, Q.; Yin, Y.; Tang, X. D.; Hadad, R.; Zhai, X. M. Assessing learning in technology-rich maker activities: A systematic review of empirical research. Computers & Education, 2020, 157, 103944. DOI: 10.1016/j.compedu.2020.103944.

Serrano-Perez, E. Arduino-based low-cost electronic textiles to introduce electric circuits and programming. Revista Cubana de Fisica, 2019, 36 (2), 110-113.

Anbalgan, A.; Sundarsingh, E. F.; Ramalingam, V. S. Design and experimental evaluation of a novel on-body textile antenna for unicast applications. Microwave and Optical Technology Letters, 2020, 62 (2), 789-799. DOI: 10.1002/mop.32075.

Oldfrey, B.; Jackson, R.; Smitham, P.; Miodownik, M. A deep learning approach to non-linearity in wearable stretch sensors. Frontiers in Robotics and AI, 2019, 6, 27. DOI: 10.3389/frobt.2019.00027.

Nuramdhani, I.; Jose M.; Samyn, P.; Adriaensens, P.; Malengier, B.; Deferme, W.; de Mey, G.; van Langenhove, L. Charge-discharge characteristics of textile energy storage devices having different PEDOT:PSS ratios and conductive yarns configuration. Polymers, 2019, 11, 345. DOI: 10.3390/polym11020345.

Li, E.; Lin, X. Y.; Seet, B.-C.; Joseph, F.; Neville, J. Low profile and low cost textile smart mat for step pressure sensing and position mapping. IEEE Instrumentation and Measurement Technology Conference, 2019, 1564-1568. DOI: 10.1109/I2MTC.2019.8826892.

Mikkonen, J.; Townsend, R. Frequency-Based Design of Smart Textiles. Proceedings of the 2019 CHI conference on human factors in computing systems ACM, 2019, 294. DOI: 10.1145/3290605.3300524.

Raad, M.; Deriche, M.; Bin Hafeedh, A.; Almasawa, H.; Bin Jofan, K.; Alsakkaf, H.; Bahumran, A.; Salem, M. An IOT based wearable smart glove for remote monitoring of rheumatoid arthritis patients. Biosignals: Proceedings of the 12th International Joint Conference on Biomedical Engineering Systems and Technologies, Vol 4: Biosignals, 2019, 224-228.

D’addio, G.; Evangelista, S.; Donisi, L.; Biancardi, A.; Andreozzi, E.; Pagano, G.; Arpaia, P.; Cesarelli, M. Development of a prototype e-textile sock. IEEE Engineering in Medicine and Biology Society Conference Proceedings, 2019, 1749-1752. DOI: 10.1109/EMBC.2019.8856739.

Di Tore, P. A.; Raiola, G. Powerglove: Genesis of a wearable technology aimed at studying volleyball service. Journal of Human Sport and Exercise, 2019, 14, S77-S83. DOI: 10.14198/jhse.2019.14.Proc1.09.

Ankhili, A.; Tao, X. Y.; Cochrane, C.; Koncar, V.; Coulon, D.; Tarlet, J.-M. Comparative study on conductive knitted fabric electrodes for long-term electrocardiography monitoring: silver-plated and PEDOT:PSS coated fabrics. Sensors, 2018, 18, 3890. DOI: 10.3390/s18113890.

Bystricky, T.; Moravcova, D.; Kaspar, P.; Soukup, R.; Hamacek, A. A Comparison of embroidered and woven textile electrodes for continuous measurement of ECG. 39th International Spring Seminar on Electronics Technology ISSE, 2016, 7-11. DOI: 10.1109/ISSE.2016.7562871.

Pina, D. S.; Fernandes, A. A.; Jorge, R. N.; Mendes, J. G. Development of a Portable System for Online EMG Monitoring. Proceedings of 2015 3rd Experiment at International Conference (Exp At'15), 2015, 13-16. DOI: 10.1109/EXPAT.2015.7463206.

Caya, M. V. C.; Casaje, J. S.; Catapang, G. B.; Dandan, R. A. V.; Sinsangan, N. B. Warning system for firefighters using e-textile. Proceedings of 2018 3rd International Conference on Computer and Communication Systems (ICCCS), 2018, 362-366. DOI: 10.1109/CCOMS.2018.8463320.

Litts, B. K.; Kafai, Y. B.; Lui, D.; Walker, J.; Widman, S. Understanding high school students' reading, remixing, and writing codeable circuits for electronic textiles. Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science Education (SIGCSE'17), 2017, 381-386. DOI: 10.1145/3017680.3017740.

Fields, D. A.; Lui, D.; Kafai, Y. B. Teaching computational thinking with electronic textiles: high school teachers’ contextualizing strategies in exploring computer science. Proceedings of International Conference on Computational Thinking Education, 2017, 67-72.

Wattuino Nanite 85. Available online: (accessed on December 5, 2020).

Make: Magazin 4/2015, Maker Media GmbH, Hannover, Germany.

Jutila, M.; Rivas, H.; Karhula, P.; Pantsar-Syväniemi, S. Implementation of a wearable sensor vest for the safety and well-being of children. Proc. Computer Sci., 2014, 32, 888-893. DOI: 10.1016/j.procs.2014.05.507.

Chuang, W.-C.; Hwang, W.-J.; Tai, T.-M.; Huang, D.-R.; Jhang, Y.-J. Continuous finger gesture recognition based on flex sensors. Sensors, 2019, 19 (18), 3986. DOI: 10.3390/s19183986.

Wearable projects. Available online: (accessed on December 5, 2020).

Make Archives – Wearic. Available online: (accessed online on December 5, 2020).

E-Textiles / Tutorials – Available online: (accessed online on December 5, 2020).

Instructables circuits: Make your own e-textile Arduino board. Available online: (accessed online on December 5, 2020).

How to get what you want. Available online: (accessed online on December 5, 2020).

Different Raspberry Pi




How to Cite

Ehrmann, G., & Ehrmann, A. (2020). Suitability of common single circuit boards for sensing and actuating in smart textiles. Communications in Development and Assembling of Textile Products, 1(2), 170–179.



Peer-reviewed articles