Landmarking for Improved Digital Product Creation

Authors

  • Emma Scott Fashion Should Empower
  • Katherine Schildmeyer
  • Gerald Ruderman ZDoit
  • Susan Ashdown Cornell University, Ithaca, NY, USA
  • Carolyn McDonald Gneiss Concept, Washougal, WA, USA
  • Simeon Gill Dept. of Materials, The University of Manchester, Manchester

DOI:

https://doi.org/10.25367/cdatp.2023.4.p70-87

Keywords:

Clone Block™, global standardized landmarking and measurement, feature points, apparel fit, rigging, rig, virtual fittings, 3D sampling

Abstract

Sampling is a critical step in the concept-to-style workflow for digitally created products. Virtual environments allow sampling without the costs associated with physical prototyping However, current practice often still requires physical prototyping. Here we consider how landmarking contributes to the need for iterative sampling, thereby inhibiting a fully digital product creation DPC process. In the process, the opportunity for error within traditional anthropometric study is highlighted and a path toward global standardized landmarking and measuring (L&M) is presented. Landmarks denote anatomical reference points common to all humans. They are critical to every stage of DPC: measuring, product development, virtual sampling, rigging, size selection, and try-on. Cross-platform use of humanoids (models of humans) and body-worn products will introduce errors if landmarking protocols do not align across three-dimensional body processing (3DBP) technologies. Here we discuss how to avoid these discrepancies by combining Clone Block™ theory with current ISO standards. Further study should validate the findings here for the implementation of global standardized L&M to facilitate 3D technology interoperability, fully DPC, and greater adoption of 3D technologies for improved fit of body-worn products.

References

Ashdown, S. P.; Loker, S.; Schoenfelder, K.; Lyman-Clarke, L. Using 3D Scans for Fit Analysis. J. Text. Apparel Technol. Manag. 2004, 4(1), 1-12.

McDonald, C.; Wu, Y.; Ballester, A.; Stahl, M. IEEE Industry Connections (IEEE-IC) landmarks and measurement standards comparison in 3D Body-model processing. IEEE Industry Connections (IEEE-IC) Landmarks and Measurement Standards Comparison in 3D Body-model Processing, 2018, pp.1-34.

Gill, S.; Scott, E.; McDonald, C.; Klepser, A.; Dāboliņa, I. White Paper – IEEE 3D Body Processing Industry Connections – Landmarking for Product Development. IEEE 3D Body Processing Industry Connections – Landmarking for Product Development, 2022, 1-48.

Glascoe, W.; Schildmeyer, K.; Scott, E.; Gill, S.; Ballester, A.; McDonald, C. Relationships between rigs and humanoid and coveroid landmarks. Proc. of 3DBODY.TECH 2022 – 13th Int. Conf. and Exh. on 3D Body Scanning and Processing Technologies, Lugano, Switzerland, 25-26 Oct. 2022, #30. DOI: 10.15221/22.30.

Gill, S.; Parker, C. J. Variation in Defining the Hip Circumference for Clothing Applications. Technical report ADE1601, 2016. DOI: 10.13140/RG.2.1.3450.0087.

Gill, S.; Parker, C. J.; Hayes, S.; Brownbridge, K.; Wren, P.; Panchenko, A. The True Height of the Waist: Explorations of Automated Body Scanner Waist Definitions of the TC2 scanner. Proceedings of the 5th International Conference on 3D Body Scanning Technologies, Lugano, Switzerland, 21-22 October 2014, pp. 55-65. DOI: 10.15221/14.055.

Scott, E. Fit Validation and Assessment Through Block Comparison. Proc. of 3DBODY.TECH 2022 – 13th Int. Conf. and Exh. on 3D Body Scanning and Processing Technologies, Lugano, Switzerland, 25-26 Oct. 2022, #19. DOI: 10.15221/22.19.

Ahmed, M.; Alrushaydan, T.; Gill, S.; Hayes, S. G.; Brubacher, K. The Suitability of Body Scanning Measurement in Pattern Drafting Methods. Proceedings of 3DBODY.TECH 2019 – 10th International Conference and Exhibition on 3D Body Scanning and Processing Technologies, Lugano, Switzerland, 22-23 Oct. 2019, pp. 58-67. DOI: 10.15221/19.058.

Kim, I. H.; Han, H.; Shin, S.-J. H. Characteristics of women’s basic bodice pattern formation in relation to the anthropometric references. Int. J. Cloth. Sci. Technol. 2020, 33(2), 188-198. DOI: 10.1108/IJCST-10-2019-0159.

Kim, H. S.; Choi, H. E.; Park, C. K.; Nam, Y. J. Standardization of the size and shape of virtual human body for apparel products. Fash. Text. 2019, 6(1), 1-20. DOI: 10.1186/S40691-019-0187-Z/TABLES/4.

These jeans all say they’ll fit a 34-inch waist. Here’s why most of them won’t | CBC News. https://www.cbc.ca/news/business/marketplace-jeans-testing-1.6658819 (accessed Nov. 27, 2022).

Bragança, S.; Arezes, P.; Carvalho, M.; Ashdown, S. Current state of the art and enduring issues in anthropometric data collection. DYNA 2016, 83(197), 22. DOI: 10.15446/dyna.v83n197.57586.

Joseph-Armstrong, H. Patternmaking for fashion design. 5th ed. Upper Saddle River, N.J.: Pearson Education/Prentice Hall, 2010.

Aldrich, W. Metric pattern cutting for women’s wear, Blackwell Publishing, 2008; p. 215.

Beazley, A.; Bond, T. Computer-aided pattern design and product development. Blackwell Publishing, 2003; p. 220.

Glascoe, W.; Schulz, J.; Scott, E.; McDonald, C. IEEE 3D Body Processing Industry Connection Assets and Transformations Definitions, 2022.

ISO 8559-2:2017 – Size designation of clothes — Part 2: Primary and secondary dimension indicators. https://www.iso.org/standard/64075.html (accessed Jul. 22, 2022).

ISO 18825-1:2016(en) – Clothing — Digital fittings — Part 1: Vocabulary and terminology used for the virtual human body. https://www.iso.org/obp/ui/#iso:std:iso:18825:-1:ed-1:v1:en (accessed Apr. 15, 2021).

ISO 18825-2:2016 – Clothing — Digital fittings — Part 2: Vocabulary and terminology used for attributes of the virtual human body’. https://www.iso.org/standard/63494.html (accessed Apr. 15, 2021).

ISO/IEC 19774-1:2019 — 4 Concepts’. https://www.web3d.org/documents/specifications/19774/V2.0/Architecture/concepts.html#f-LOA2Joints (accessed Sep. 03, 2022).

Ashdown, S. P.; Sung Choi, M.; Milke, E. Automated side-seam placement from 3D body scan data. Int. J. Cloth. Sci. Technol. 2008, 20(4), 199-213. DOI: 10.1108/09556220810878829.

Chun, J. Communication of sizing and fit. In Sizing in Clothing, CRC Press, 2007, pp. 220-245. DOI: 10.1201/9781439824306.ch7.

West, A.; Istook, C. L.; Li, J.; Xia, S. What is the most appropriate way to define a 3D waist level? In Pivoting for the Pandemic, Dec. 2020, pp. 3-5. DOI: 10.31274/itaa.11834.

Scott, E.; Sayem, A. S. M. Landmarking and Measuring for Critical Body Shape Analysis Targeting Garment Fit. Proceedings of 3DBODY.TECH 2018 – 9th International Conference and Exhibition on 3D Body Scanning and Processing Technologies, Lugano, Switzerland, 16-17 Oct. 2018, pp. 222-235. DOI: 10.15221/18.222.

Scott, E.; Gill, S.; McDonald, C. Novel Methods to Drive Pattern Engineering through and for Enhanced Use of 3D Technologies. Proceedings of 3DBODY.TECH 2019 – 10th International Conference and Exhibition on 3D Body Scanning and Processing Technologies, Lugano, Switzerland, 22-23 Oct. 2019, pp. 211-221. DOI: 10.15221/19.211.

Scott, E. L. The role of 3D measurement technology and anthropometric data for improved garment fit and sustainable manufacturing. In Digital Manufacturing Technology for Sustainable Anthropometric Apparel, Elsevier, 2022, pp. 23-48. DOI: 10.1016/B978-0-12-823969-8.00002-2.

Han, H.; Nam, Y.; Shin, S. J. H. Algorithms of the Automatic Landmark Identification for various torso shapes. Int. J. Cloth. Sci. Technol. 2010, 22(5), 343-357. DOI: 10.1108/09556221011071811.

Han, H.; Nam, Y. Automatic body landmark identification for various body figures. Int. J. Ind. Ergon. 2011, 41(6), 592-606. DOI: 10.1016/j.ergon.2011.07.002.

Jo, J. W. et al. Automatic human body segmentation based on feature extraction. Int. J. Cloth. Sci. Technol. 2014, 26(1) pp. 4-24. DOI: 10.1108/IJCST-10-2012-0062/FULL/XML.

Ryu, E. J.; Song, H. K. Automatic extraction of upper body landmarks using Rhino and Grasshopper algorithms. Fash. Text. 2022, 9(1), 1-23. DOI: 10.1186/S40691-022-00302-Y/FIGURES/15.

Han, H.; Hwang Shin, S. J. Body scan alignment reducing body posture variations for fit evaluation. Int. J. Fash. Des. Technol. Educ. 2015, 8(3), 277-289. DOI: 10.1080/17543266.2015.1093178.

Zhong, Y.; Li, D.; Wu, G.; Hu, P. P. Automatic body measurement based on slicing loops. Int. J. Cloth. Sci. Technol. 2018, 30(3), 380-397. DOI: 10.1108/IJCST-06-2017-0086.

Kim, M.; Kim, S. Development of a script-based versatile three-dimensional body measurement system. Int. J. Cloth. Sci. Technol. 2018, 30(5), 598-609. DOI: 10.1108/IJCST-10-2017-0159.

Yanagawa, T. L.; Maitland, M. E.; Burgess, K.; Young, L.; Hanley, D. Assessment of Thoracic Kyphosis Using the Flexicurve for Individuals with Osteoporosis. Hong Kong Physiother. J. 2000, 18(2), 53-57. DOI: 10.1016/S1013-7025(00)18004-2.

Joseph-Armstrong, H.; Ashdown, S.P. Draping for Apparel Design, 4th ed. Bloomsbury Publishing Plc, 2022.

Ranavolo, A. et al. Modelling the spine as a deformable body: Feasibility of reconstruction using an optoelectronic system. Appl. Ergon. 2013, 44(2), 192-199. DOI: 10.1016/J.APERGO.2012.07.004.

Kayalioglu, G. The Vertebral Column and Spinal Meninges. Spinal Cord, pp. 17-36, Jan. 2009, DOI: 10.1016/B978-0-12-374247-6.50007-9.

Hong, Y.; Bruniaux, P.; Zeng, X.; Liu, K.; Curteza, A.; Chen, Y. Visual-Simulation-Based Personalized Garment Block Design Method for Physically Disabled People with Scoliosis (PDPS). Autex Res. J. 2018, 18(1), 35-45. DOI: 10.1515/aut-2017-0001.

Hong, Y.; Zeng, X.; Bruniaux, P.; Curteza, A.; Stelian, M.; Chen, Y. Garment opening position evaluation using kinesiological analysis of dressing activities: case study of physically disabled people with scoliosis (PDPS). Text. Res. J. 2018, 88(20), 2303-2318. DOI: 10.1177/0040517517720503.

Keller, M.; Zuffi, S.; Black, M. J.; Pujades, S. OSSO: Obtaining Skeletal Shape from Outside. Arxiv:2204.10129, Apr. 2022.

Brake, E.; Kyosev, Y.; Rose, K. 3D garment fit on solid and soft digital avatars – preliminary results. Commun. Dev. Assem. Text. Prod. 2022, 3(2), 97-103. DOI: 10.25367/cdatp.2022.3.p97-103.

Sebastian, J.; Sadat Muhammad Sayem, A. Avatar Morphing for Virtual Fashion Prototyping. In Transitions 2: Material Revolution Conference, 11 April 2018 - 12 April 2018, Huddersfield, UK.

Balach, M.; Cichocka, A.; Frydrych, I.; Kinsella, M. Initial Investigation into Real 3D Body Scanning Versus Avatars for the Virtual Fitting of Garments. Autex Res. J. 2020, 20(2), 128-132. DOI: 10.2478/aut-2019-0037.

Sadat Muhammad Sayem, A. Virtual-fashion-ID-a-reality-check-Abu-Sadat-Muhammed-Sayem’, 2019.

Gill, S.; Wang, Y.; Ahmed, M.; Hayes, S. G.; Harwood, A. R. G.; Gill, J. Scan to Pattern: How Body Scanning Can Help Transform Traditional Methods of Creating Pattern Blocks. 9th Int. Conference and Exhibition on 3D Body Scanning and Processing Technologies, 2018, pp. 236-240. DOI: 10.15221/18.236.

Daanen, H. A. M.; Psikuta, A. 3D body scanning. In Automation in Garment Manufacturing, The Textile Institute Book Series, pp. 237-252, 2018. DOI: 10.1016/B978-0-08-101211-6.00010-0.

Verweij, L. M.; Terwee, C. B.; Proper, K. I.; Hulshof, C. T.; van Mechelen, W. Measurement error of waist circumference: gaps in knowledge. Public Health Nutr. 2013, 16(2), 281-288. DOI: 10.1017/S1368980012002741.

Strydom, M.; De Klerk, H. Key to good fit: body measurement problems specific to key dimensions. J. Consum. Sci. 2010, 38(1), 74-83. DOI: 10.4314/JFECS.V38I1.63193.

Ashdown, S. P.; Na, H. Comparison of 3-D Body Scan Data to Quantify Upper-Body Postural Variation in Older and Younger Women. Cloth. Text. Res. J. 2008, 26(4), 292-307. DOI: 10.1177/0887302X07309131.

Bye, E.; Labat, K. L.; Delong, M. R. Analysis of Body Measurement Systems for Apparel. Cloth. Text. Res. J. 2006, 24(2), 66-79. DOI: 10.1177/0887302X0602400202.

Simmons, K.; Istook, C. L.; Devarajan, P. Female Figure Identification Technique (FFIT) for apparel part I: Describing female shapes. J. Text. Apparel Technol. Manag. 2004, 4(1), 1-16.

Simmons, K. P.; Istook, C. L. Body measurement techniques: Comparing 3D body-scanning and anthropometric methods for apparel applications. Journal of Fashion Marketing and Management: An International Journal 2003, 7(3), 306-332. DOI: 10.1108/13612020310484852.

Adams, D. C.; Cerney, M. M. Quantifying biomechanical motion using Procrustes motion analysis. J. Biomech. 2007, 40(2), 437-444. DOI: 10.1016/J.JBIOMECH.2005.12.004.

Halvorson, R. T. et al. Point-of-care motion capture and biomechanical assessment improve clinical utility of dynamic balance testing for lower extremity osteoarthritis. PLOS Digit. Heal. 2022, 1(7), e0000068. DOI: 10.1371/JOURNAL.PDIG.0000068.

Moving From 3D To A New Digital Product Creation Ecosystem. https://www.theinterline.com/07/2022/moving-from-3d-to-a-new-digital-product-creation-ecosystem/ (accessed Sep. 02, 2022).

Undefined: The Missed Potential Of Digital Product Creation. https://www.theinterline.com/04/2022/fashion-3d-tech-pack/ (accessed Sep. 05, 2022)

Standardized L&M for fully digital product creation.

Downloads

Published

2023-03-25

How to Cite

Scott, E., Schildmeyer, K. ., Ruderman, G., Ashdown, S., McDonald, C., & Gill, S. (2023). Landmarking for Improved Digital Product Creation. Communications in Development and Assembling of Textile Products, 4(1), 70–87. https://doi.org/10.25367/cdatp.2023.4.p70-87

Issue

Section

Peer-reviewed articles

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.