Impact of material characteristics of cloth on the gripping force and performance of finger grippers

Authors

DOI:

https://doi.org/10.25367/cdatp.2024.5.p222-233

Keywords:

automation, gripping solutions, gripping force, principal component analysis

Abstract

With the rising demand for automation and robotization in the textile industry, a variety of gripping solutions for textile materials has been developed in recent years. The increase in finger grippers is noticeable, however, a difference in the applicability and the holding force of finger grippers can be observed. Understanding the correlation between characteristics of the picked up textile materials, the style, coating and material of the gripper and the repeatability of the pick up process and the gripping force is crucial for their successful industrial integration. In this paper, the correlations between the properties of the different textiles and the gripping performance of a finger gripper are investigated. Bending stiffness, lateral compressibility, friction parameters and other textile characteristics are compared to the gripping force of the gripper with the selected textiles. The most important parameters are selected by principal component analysis and investigated for correlation.

References

Sanchez, J.; Corrales, J.-A.; Bouzgarrou, B.-C.; Mezouar, Y. Robotic manipulation and sensing of deformable objects in domestic and industrial applications: a survey. Int. J. Robot. Res. 2018, 37, 688–716. DOI: 10.1177/0278364918779698.

Su, J.; Nan, W.; Zhang, F. A design of bionic soft gripper for automatic fabric grasping in apparel manufacturing. Text. Res. J. 2022, 93, 1587-1601. DOI: 10.1177/00405175221134963.

Borràs, J.; Alenyà, G.; Torras, C. A Grasping-Centered Analysis for Cloth Manipulation. IEEE Trans. Robot. 2020, 36, 924–936. DOI: 10.1109/TRO.2020.2986921.

Donaire, S.; Borràs, J.; Alenyà, G.; Torras, C. A Versatile Gripper for Cloth Manipulation. IEEE Robot. Autom. Lett. 2020, 5, 6520–6527. DOI: 10.1109/LRA.2020.3015172.

Digumarti, K. M.; Cacucciolo, V.; Shea, H. Dexterous textile manipulation using electroadhesive fingers. 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Sep. 2021, pp. 6104–6109. DOI: 10.1109/IROS51168.2021.9636095.

Borràs, J. Effective grasping enables successful robot-assisted dressing. Sci. Robot. 2022, 7, eabo7229. DOI: 10.1126/scirobotics.abo7229.

Reinhart, G.; Straßer, G. Flexible gripping technology for the automated handling of limp technical textiles in composites industry. Prod. Eng. 2011, 5, 301–306. DOI: 10.1007/s11740-011-0306-1.

Mykhailyshyn, R.; Savkiv, V.; Fey, A. M.; Xiao, J. Gripping Device for Textile Materials. IEEE Trans. Autom. Sci. Eng. 2022, 20, 2397-2408. DOI: 10.1109/TASE.2022.3208796.

Stephan, J.; Seliger, G. Handling with ice – the cryogripper, a new approach. Assem. Autom. 1999, 19, 332–337. DOI: 10.1108/01445159910295249.

Jiménez, P.; Torras, C. Perception of cloth in assistive robotic manipulation tasks. Nat. Comput. 2020, 19, 409–431. DOI: 10.1007/s11047-020-09784-5.

Förster, F.; Ballier, F.; Coutandin, S.; Defranceski, A.; Fleischer, J. Manufacturing of Textile Preforms with an Intelligent Draping and Gripping System. Proc. CIRP 2017, 66, 39-44.

Dragusanu, M.; Marullo, S.; Malvezzi, M.; Achilli, G. M.; Valigi, M. C.; Prattichizzo, D. The DressGripper: A Collaborative Gripper With Electromagnetic Fingertips for Dressing Assistance. IEEE Robot. Autom. Lett. 2022, 7, 7479–7486. DOI: 10.1109/LRA.2022.3183756.

Hinwood, D.; Herath, D.; Goecke, R. Towards the Design of a Human-Inspired Gripper for Textile Manipulation. 2020 IEEE 16th International Conference on Automation Science and Engineering (CASE), Aug. 2020, pp. 913–920. DOI: 10.1109/CASE48305.2020.9216964.

Spiers, A. J.; Calli, B.; Dollar, A. M. Variable-Friction Finger Surfaces to Enable Within-Hand Manipulation via Gripping and Sliding. IEEE Robot. Autom. Lett. 2018, 3, 4116–4123. DOI: 10.1109/LRA.2018.2856398.

Jiménez, P. Visual grasp point localization, classification and state recognition in robotic manipulation of cloth: An overview. Robot. Auton. Syst. 2017, 92, 107–125. DOI: 10.1016/j.robot.2017.03.009.

Schulz, G. Grippers for flexible textiles. Fifth International Conference on Advanced Robotics ’Robots in Unstructured Environments, Jun. 1991, pp. 759–764, vol. 1. DOI: 10.1109/ICAR.1991.240584.

Lien, T. K.; Davis, P. G. G. A novel gripper for limp materials based on lateral Coanda ejectors. CIRP Ann. 2008, 57, 33–36. DOI: 10.1016/j.cirp.2008.03.119.

von Drigalski, F.; Gall, M.; Cho, S.-G..; Ding, M.; Takamatsu, J.; Ogasawara, T. Textile identification using fingertip motion and 3D force sensors in an open-source gripper. 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO), Dec. 2017, pp. 424–429. DOI: 10.1109/ROBIO.2017.8324454.

Von Drigalski, F.; Yoshioka, D.; Yamazaki, W.; Cho, S.-G.; Gall, M.; Uriguen, Eljuri, P. M. NAIST Openhand M2S: A Versatile Two-Finger Gripper Adapted for Pulling and Tucking Textile. 2017 First IEEE International Conference on Robotic Computing (IRC), Apr. 2017, pp. 117–122. DOI: 10.1109/IRC.2017.55.

Ebraheem, Y.; Drean, E.; Adolphe, D. C. Universal gripper for fabrics – design, validation and integration. Int. J. Cloth. Sci. Technol. 2020, 33, 643–663. DOI: 10.1108/IJCST-11-2019-0180.

Kyosev, Y. Material description for textile draping simulation: data structure, open data exchange formats and system for automatic analysis of experimental series. Text. Res. J. 2022, 92, 1519–1536. DOI: 10.1177/00405175211061192.

Seif, M. Bereitstellung von Materialkennwerten für die Simulation von Bekleidungsprodukten. PhD thesis, TU Dresden, Dresden, 2007. Available online: https://core.ac.uk/download/pdf/236365068.pdf

OFG SI-70 50 Gripper | Schmalz. https://www.schmalz.com/de/vakuumtechnik-fuer-die-automation/vakuum-komponenten/flaechengreifsysteme-und-endeffektoren/fingergreifer/fingergreifer-ofg-312389/10.01.51.00004/ (accessed Feb. 27, 2023).

‘statsmodels – Website’. https://www.statsmodels.org/stable/index.html (accessed Feb. 27, 2023).

Asuero, A. G.; Sayago, A.; González, A. G. The Correlation Coefficient: An Overview. Crit. Rev. Anal. Chem. 2006, 36, 41–59. DOI: 10.1080/10408340500526766.

Green four finger grippers from rubber are pulling a textile piece

Downloads

Published

2024-12-29

How to Cite

Herz, S., & Kyosev, Y. (2024). Impact of material characteristics of cloth on the gripping force and performance of finger grippers. Communications in Development and Assembling of Textile Products, 5(2), 222–233. https://doi.org/10.25367/cdatp.2024.5.p222-233

Issue

Section

Peer-reviewed articles

Similar Articles

<< < 1 2 3 4 > >> 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 > >>