Development of geodesic warp lines on point clouds for knitting graph calculation

Authors

  • Franz Dietrich Textilforschungsinstitut Thüringen Vogtland e.V., Greiz, Germany https://orcid.org/0009-0006-3681-8244
  • Daria Dordina Institut für Geometrie (GMV), TU Dresden, Dresden, Germany
  • Daniel Lordick Institut für Geometrie (GMV), TU Dresden, Dresden, Germany
  • Pulkit Mishra Textilforschungsinstitut Thüringen Vogtland e.V., Greiz, Germany

DOI:

https://doi.org/10.25367/cdatp.2025.6.p47-54

Keywords:

Flat knit, Close-to-skin (CTS) textiles, Knitting warp lines, Reverse engineering, Knitting graphs, Point cloud data

Abstract

Flat knit has a high potential for networked production, but is also well suited for various smart textile applications and the single-piece production of close-to-skin (CTS) textiles with a high level of technology integration. Despite this good starting point, there are still major gaps in digital engineering that is based on 3D CAD development environments. Within future production platforms for customizable flat knit products, digital design and data for manufacturing, simulation, and visualization data are indispensable prerequisites. Appropriate procedures and algorithms are the subject of current international research. This paper contributes a new point-cloud-based approach for the digital creation of knitting charts and the graphic representations of knitted fabric suitable for production on knitting machines for CTS knitwear. Knitting charts, the mesh-loop representations (e.g., bitmaps) of discrete geometric developments of knittable polygon meshes, are derived from hybrid graph-based 3D abstractions. Another focus is efficient data handling, which is a fundamental step in achieving end-to-end process digitization for personalized smart textiles and wearables, including sensor-integrated workwear or medical devices.

References

Popescu, M.; Rippmann, M.; van Mele, T.; Block, P. Automated Generation of Knit Patterns for Non-developable Surfaces. In Humanizing Digital Reality; De Rycke, K., et al., Ed.; Springer, Singapore, 2018. DOI: https://doi.org/10.1007/978-981-10-6611-5_24.

Dietrich, F.; Kyosev, Y. Adaptive building of truss network for deformation analysis of 3D-knitted technical-textiles. In Proc. of International Conference – Smart Textiles and Emerging Technologies, 1(1), 1-12. 2023. ISSN 3021-1239. DOI: https://doi.org/10.61135/stet2023.

Narayanan, V.; Albaugh, L.; Hodgins, J.; Coros, S.; McCann, J. Automatic Machine Knitting of 3D Meshes. ACM Trans. Graph. 2018, 37, 35. DOI: https://doi.org/10.1145/3186265.

Maćkiewicz, A.; Ratajczak, W. Principal components analysis (PCA). Computers & Geosciences 1993, 19, 303-342. DOI: https://doi.org/10.1016/0098-3004(93)90090-R.

Rodríguez-Gonzálvez, P.; Fernández-Palacios; B. J. Point cloud optimization based on 3D geometric features for architectural heritage modeling. Disegnarecon 2021, 14, 18. DOI: https://doi.org/10.20365/DISEGNARECON.26.2021.18.

Karmon, A.; Sterman, Y.; Shaked, T.; Sheffer, E.; Nir, S. KNITIT: a computational tool for design, simulation, and fabrication of multiple structured knits. In Proc. of the 2nd Annual ACM Symposium on Computational Fabrication 2018, 4. DOI: https://doi.org/10.1145/3213512.3213516.

Nader, G.; Quek, Y. H.; Chia, P. Z.; Weeger, O.; Yeung, S.-K. KnitKit: A flexible system for machine knitting of customizable textiles. In ACM Transactions on Graphics (Siggraph 2021).

Mitra, R.; Makatura, L.; Whiting, E.; Chien, E. Helix-Free Stripes for Knit Graph Design. In SIGGRAPH '23: ACM SIGGRAPH 2023 Conference Proceedings 2023, 75. DOI: https://doi.org/10.1145/3588432.3591564.

Lin, J.; Narayanan, V.; Ikarashi, Y.; Ragan-Kelley, J.; Bernstein, G.; McCann, J. Semantics and Scheduling for Machine Knitting Compilers. ACM Trans. Graph. 2023, 42(4), 143.

Dordina, D.; Milkau, C.; Tošić, Z.; Lordick, D., Schneider, D. Point Cloud to True-to-Deformation Free-Form NURBS. In Advances in Architectural Geometry, Kathrin Dörfler, Jan Knippers, Achim Menges, Stefana Parascho, Helmut Pottmann and Thomas Wortmann, Ed.; Berlin, Boston: De Gruyter, 2023; 125-136. DOI: https://doi.org/10.1515/9783111162683-010.

Crane, K.; Weischedel, C.; Wardetzky, M. The Heat Method for Distance Computation. ACM Transactions on Graphics 2013, 32(5), 90-99. DOI: https://doi.org/10.1145/3131280.

Sharp, N. potpourri3d V1.0.0. https://github.com/nmwsharp/potpourri3d (accessed 2023-07-20).

3D Knie geometry separated into polygons as knitting cells

Downloads

Published

2025-07-13

How to Cite

Dietrich, F., Dordina, D., Lordick, D., & Mishra, P. (2025). Development of geodesic warp lines on point clouds for knitting graph calculation. Communications in Development and Assembling of Textile Products, 6(1), 47–54. https://doi.org/10.25367/cdatp.2025.6.p47-54

Issue

Section

Peer-reviewed articles

Similar Articles

<< < 2 3 4 5 6 7 8 > >> 

You may also start an advanced similarity search for this article.