Overview on natural dyes and their IR-spectra - Part VI: Algae based pigments
DOI:
https://doi.org/10.25367/cdatp.2025.6.p123-137Keywords:
Algae, Pigment, Infrared spectroscopy, Scanning electron microscopy, Spirulina, Chlorella, Dulce, OrceinAbstract
Algae are water based species with different colorations as green or red. Color pigments and dye extracts gained from algae are offered as natural based plant dyes. Algae based materials are usually rarely considered for dyeing of textiles in comparison to synthetic or conventional plant based dyes. Nevertheless, algae are a sustainable and natural source of bio-based substances and an increasing use might be a promising development in future. The current paper is the last one of a series of papers reporting on natural dyes and materials with special view on their infrared spectra. This last overview paper is dedicated to available special types of algae based natural pigments and related other algae and lichen based products which can be useful for coloration processes. Besides, general information on dye origin and possible application, especially infrared spectra of dye and reference materials are supported. The IR spectra are discussed in respect to sample composition and chemical structure. By this, the actual paper can be useful for persons searching for alternative coloration materials or working in the field of material analytics and spectroscopy.
References
Schweppe, H. Handbuch der Naturfarbstoffe; ecomed Verlagsgesellschaft, Landsberg, 1993.
Cardon, D. Natural Dyes – Sources, Tradition, Technology and Science; Archetype Publications Ltd., London, 2007.
Wardman, R.H. An Introduction to Textile Coloration; John Wiley & Sons Ltd., Hoboken, 2018.
Negi, A. Natural Dyes and Pigments: Sustainable Applications and Future Scope. Sustainable Chemistry 2025, 6, 23. doi.org/10.3390/suschem6030023
Hasan, K. F.; Hridam, D.; Rahman, M. M.; Morshed, M. N.; Al Azad, S.; Genyang, C. A review on antibacterial coloration agent’s activity, implementation & efficiency to ensure the ecofriendly & green textiles. American Journal of Polymer Science & Engineering 2016, 4, 39-59.
Singh, R.; Jain, A.; Panwar, S.; Gupta, D.; Khare, S. K. Antimicrobial activity of some natural dyes. Dyes and Pigments 2005, 66, 99-102. doi.org/10.1016/j.dyepig.2004.09.005
Kasiri, M. B.; Safapour, S. Natural dyes and antimicrobials for green treatment of textiles. Environmental Chemistry Letters 2014, 12, 1-13. doi.org/10.1007/s10311-013-0426-2
Grifoni, D.; Bacci, L.; Zipoli, G.; Albanese, L.; Sabatini, F. The role of natural dyes in the UV protection of fabrics made of vegetable fibres. Dyes and Pigments 2011, 91, 279-285. doi.org/10.1016/j.dyepig.2011.04.006
Chao, Y. C.; Ho, T. H.; Cheng, Z. J.; Kao, L. H.; Tsai, P. S. A study on combining natural dyes and environmentally-friendly mordant to improve color strength and ultraviolet protection of textiles. Fibers and Polymers 2017, 18, 1523-1530. doi.org/10.1007/s12221-017-6964-7
Mutaf-Kılıç, T.; Demir, A.; Elibol, M.; Oncel, S. Ş. Microalgae pigments as a sustainable approach to textile dyeing: A critical review. Algal Research 2023, 76, 103291. doi.org/10.1016/j.algal.2023.103291
Mir, R. A.; Adeel, S.; Azeem, M.; Batool, F.; Khan, A. A.; Gul, S.; Iqbal, N. Green algae, Cladophora glomerata L.–based natural colorants: dyeing optimization and mordanting for textile processing. Journal of Applied Phycology 2019, 31, 2541-2546. doi.org/10.1007/s10811-018-1717-6
Almoulki, T.; Akkaya, E. Using chlorella vulgaris as a natural-textile dye. Environmental Research & Technology 2023, 6, 326-331. doi.org/10.35208/ert.1264338
Youn Sook, S. Natural green dye extracted from green algae and method for manufacturing the same. Korean Patent KR20120033852a, 2010.
Matos, Â. P. The impact of microalgae in food science and technology. Journal of the American Oil Chemists' Society 2017, 94, 1333-1350. doi.org/10.1007/s11746-017-3050-7
Sun, H.; Wang, Y.; He, Y.; Liu, B.; Mou, H.; Chen, F.; Yang, S. Microalgae-derived pigments for the food industry. Marine Drugs 2023, 21, 82. doi.org/10.3390/md21020082
Ismail, M. M.; El Zokm, G. M. Algae as keystone for blue economy: sustainability and challenges. Discover Sustainability 2025, 6, 366. doi.org/10.1007/s43621-024-00746-w
Mahltig, B. Overview on natural dyes and their IR-spectra – Part I: Plant based dyes with naphthoquinone and anthraquinone structure. Communications in Development and Assembling of Textile Products – CDATP 2024, 5, 20-37. DOI 10.25367/cdatp.2024.5.p20-37
Mahltig, B. Overview on natural dyes and their IR-spectra – Part II: Indigo containing plant dyes. Communications in Development and Assembling of Textile Products – CDATP 2024, 5, 66-80. doi.org/10.25367/cdatp.2024.5.p66-80
Mahltig, B. Overview on natural dyes and their IR-spectra – Part III: Natural dyes based on wooden materials. Communications in Development and Assembling of Textile Products – CDATP 2024, 5, 81-101. doi.org/10.25367/cdatp.2024.5.p81-101
Mahltig, B. Overview on natural dyes and their IR-spectra – Part IV: Dyes originated from insects. Communications in Development and Assembling of Textile Products – CDATP 2024, 5, 107-119. doi.org/10.25367/cdatp.2024.5.p107-119
Mahltig, B. Overview on natural dyes and their IR-spectra – Part V: Plant based dyes. Communications in Development and Assembling of Textile Products – CDATP 2025, 6, 13-46. doi.org/10.25367/cdatp.2025.6.p13-46
Hesse, M.; Meier, H.; Zeeh, B. Spectroscopic Methods in Organic Chemistry, Georg Thieme Verlag, 2008.
Günzler, H.; Gremlich, H.-U. IR Spectroscopy, WILEY-VCH Verlag, 2002.
Gillie, J.K.; Hochlowski, J.; Arbuckle-Keil, G. A. Infrared Spectroscopy. Analytical Chemistry 2000, 72, 71-80. doi.org/10.1021/a1000006w
Peets, P.; Kaupmees, K.; Vahur, S.; Leito, I. Reflectance FT-IR spectroscopy as a viable option for textile fiber identification. Heritage Science 2019, 7, 1-10. doi.org/10.1186/s40494-019-0337-z
Široká, B.; Široký, J.; Bechtold, T. Application of ATR-FT-IR single-fiber analysis for the identification of a foreign polymer in textile matrix. International Journal of Polymer Analysis and Characterization 2011, 16, 259-268. doi.org/10.1080/1023666X.2011.570066
Mahltig, B. High-performance fibres–a review of properties and IR-Spectra. Tekstilec 2021, 64, 96-118. doi.org/10.14502/Tekstilec2021.64.96-118
Flesner, J.; Mahltig, B. Fibers from Natural Resources. Book chapter. In: Handbook of Composites from Renewable Materials, Volume 4 - Functionalization; Thakur, V.K.; Thakur, M.K.; Kessler, M.R. (Eds.), Scrivener Publishing Wiley, Hoboken, New Jersey, USA, 2017; pp. 287-310.
Vasileva, I.; Ivanova, J. Biochemical profile of green and red algae–A key for understanding their potential application as food additives. Trakia Journal of Sciences 2019, 1, 1-17. doi:10.15547/tjs.2019.01.001
Ścieszka, S.; Klewicka, E. Algae in food: A general review. Critical Reviews in Food Science and Nutrition 2019, 59, 3538-3547. doi.org/10.1080/10408398.2018.1496319
Imchen, T.; Singh, K. S. Marine algae colorants: Antioxidant, anti-diabetic properties and applications in food industry. Algal Research 2023, 69, 102898. doi.org/10.1016/j.algal.2022.102898
Dougherty, R.C.; Strain, H.H.; Svec, W.A.; Uphaus, R.A.; Katz, J.J. Structure, properties, and distribution of chlorophyll C. Journal of the American Chemical Society 1970, 92, 2826-2833.DOI10.1021/ja00712a037
Sarada, R.; Vidhyavathi, R.; Usha, D.; Ravishankar, G. A. An efficient method for extraction of astaxanthin from green alga Haematococcus pluvialis. Journal of agricultural and food chemistry 2006, 54, 7585-7588. doi.org/10.1021/jf060737t
Fiedler, D.; Hager, U.; Franke, H.; Soltmann, U.; Böttcher, H. Algae biocers: astaxanthin formation in sol–gel immobilised living microalgae. Journal of Materials Chemistry 2007, 17, 261-266. DOI: 10.1039/B613455F
Fatima, I.; Munir, M.; Qureshi, R.; Hanif, U.; Gulzar, N.; Sheikh, A. A. Advanced methods of algal pigments extraction: A review. Critical Reviews in Food Science and Nutrition 2024, 64, 9771-9788. doi.org/10.1080/10408398.2023.2216782
Blanckart, L.; Munasinghe, E. A.; Bendt, E.; Rahaman, A.; Abomohra, A.; Mahltig, B. Algae-Based Coatings for Fully Bio-Based and Colored Textile Products. Textiles, 2025, 5, 3. doi.org/10.3390/textiles5010003
Ciptandi, F.; Susilowati, T. H.; Ramadhan, M. S. Opportunities of using Spirulina platensis as homemade natural dyes for textiles. Open Agriculture 2021, 6, 819-825. doi.org/10.1515/opag-2020-0167
Hamann, B. Die 50 besten Superfoods, Kopp Verlag, 2021.
Rias-Bucher, B. Meeres Gemüse und Algen, Mankau Verlag GmbH, 2017.
Kremer Pigmente GmbH (Aichstetten, Germany), product web page for Spirulina Green, Algae Pigment. https://www.kremer-pigmente.com/en/shop/pigments/38050-spirulina-green-algae-pigment.html (accessed 2023-11-13).
Narayana Verlag GmbH (Kandern, Germany), product web page for Spirulina powder / food additive. https://www.narayana-verlag.de/Bio-Spirulina-Pulver-naturrein-500-g-von-Unimedica/b28010?gad_source=1&gclid=CjwKCAiA-P-rBhBEEiwAQEXhH_fRfrtAJzJv6m9yWtgYnxuZoHxLD64GoSLLgn47HOl-CEXNteLqTxoC10QQAvD_BwE (accessed 2023-12-19)
Narayana Verlag GmbH (Kandern, Germany), product web page for Chlorella powder / food additive. https://www.narayana-verlag.de/Bio-Chlorella-Pulver-250-g-laborgeprueft-und-naturrein-von-Unimedica/b28009?gad_source=1&gclid=CjwKCAiA-P-rBhBEEiwAQEXhHxClMGlc81xyeoMfqMAbBIoK0tZVXuc2UNnzrNkEmmBFlVV1rcsxBBoCE7oQAvD_BwE (accessed 2023-12-19).
Kremer Pigmente GmbH (Aichstetten, Germany), product web page for Spirulina Blue, Algae Pigment. https://www.kremer-pigmente.com/en/shop/new-products/38060-spirulina-blue-algae-pigment.html (accessed 2023-11-13).
Kremer Pigmente GmbH (Aichstetten, Germany), product web page for Irish Moss / Caragheen moss, Algae Product. https://www.kremer-pigmente.com/en/shop/dyes-vegetable-color-paints/38580-irish-moss.html (accessed 2023-12-19).
Narayana Verlag GmbH (Kandern, Germany), product web page for Dulse, Palmaria palmata – dried flakes / food additive. https://www.narayana-verlag.de/Dulse-Flocken-Bio-Algenladen-100-g/b30827?gad_source=1&gclid=CjwKCAiA_5WvBhBAEiwAZtCU7-kpzITlcZw-vRhYLVBUiFPM68AzaVsR4v7WD79Ob-eO73fjyC5lYBoC8p8QAvD_BwE (accessed 2024-03-04).
Narayana Verlag GmbH (Kandern, Germany), product web page for Wakame algae, dried pieces / food additive. https://www.narayana-verlag.de/Wakame-Meeresalgen-getrocknet-Arche-Naturkueche-40-g/b16550?gad_source=1&gclid=CjwKCAiA_5WvBhBAEiwAZtCU7zKMsjmUcZwkx7m0B0Pyho-rjMyt9sP9BDKskF7MxeaCjDqmjcsZJBoCr6QQAvD_BwE (accessed 2024-03-04).
Nature Ingredients GmbH (Dortmund, Germany), product web page for brown algae food additive. https://hannespurelebenslust.de/products/braunalge?srsltid=AfmBOortlGVQBcubNkmjMOIR3_0v5LwmU-n22F12WIsDHfdIQwyoU3XF (accessed 2025-08-26).
Carl Roth GmbH (Karlsruhe, Germany), product webpage for Orcein / Natural Red 28. https://www.carlroth.com/de/de/chromogene-farbstoffe/orcein/p/0320.1 (accessed 2024-03-04).
Lafarga, T.; Fernández-Sevilla, J. M.; González-López, C.; Acién-Fernández, F. G. Spirulina for the food and functional food industries. Food Research International 2020, 137, 109356. doi.org/10.1016/j.foodres.2020.109356
Moldovan, S.; Bou-Belda, E.; Franco, E.; Ferrandiz, M.; Gisbert-Paya, J.; Diaz-Garcia, P.; Pascual, J.; Bonet-Aracil, M. Wastewater effluents analysis from sustainable algae-based blue dyeing with phycocyanin. Textile Research Journal 2022, 92, 3925-3939. DOI: 10.1177/00405175221119419
Faieta, M.; Corradini, M.G.; Di Michele, A.; Ludescher, R.D.; Pittia, P. Effect of encapsulation process on technological functionality and stability of Spirulina platensis extract. Food Biophysics 2020, 15, 50-63. doi.org/10.1007/s11483-019-09602-1
Venkatesan, S.; Pugazhendy, K.; Sangeetha, D.; Vasantharaja, C.; Prabakaran, S.; Meenambal, M. Fourier transform infrared (FT-IR) spectroscopic analysis of Spirulina. Int. J. Pharm. Biol. Arch. 2012, 3, 969-972.
Theivandran, G.; Ibrahim, S.M.; Murugan, M. Fourier transform infrared (FT-IR) spectroscopic analysis of Spirulina fusiformis. Journal of Medicinal Plants Studies 2015, 3, 30-32.
Liu, H. J.; Xu, C. H.; Zhou, Q.; Wang, F.; Li, W. M.; Ha, Y. M.; Sun, S. Q. Analysis and identification of irradiated Spirulina powder by a three-step infrared macro-fingerprint spectroscopy. Radiation Physics and Chemistry 2013, 85, 210-217. doi.org/10.1016/j.radphyschem.2012.12.001
Duygu, D.Y.; Udoh, A.U.; Ozer, T.B.; Akbulut, A.; Erkaya, I.A.; Yildiz, K.; Guler, D. Fourier transform infrared (FTIR) spectroscopy for identification of Chlorella vulgaris Beijerinck 1890 and Scenedesmus obliquus (Turpin) Kützing 1833. African Journal of Biotechnology 2012, 11, 3817-3824. DOI:10.5897/AJB11.1863
Zhang, F.; Endo, T.; Kitagawa, R.; Kabeya, H.; Hirotsu, T. Synthesis and characterization of a novel blend of polypropylene with Chlorella. Journal of Materials Chemistry 2000, 10, 2666-2672. DOI: 10.1039/B004489J
Murdock, J. N.; Wetzel, D. L. FT-IR microspectroscopy enhances biological and ecological analysis of algae. Applied Spectroscopy Reviews 2009, 44, 335-361. DOI: 10.1080/05704920902907440
Maehre, H.K.; Edvinsen, G.K.; Eilertsen, K.E.; Elvevoll, E.O. Heat treatment increases the protein bioaccessibility in the red seaweed dulse (Palmaria palmata), but not in the brown seaweed winged kelp (Alaria esculenta). Journal of Applied Phycology 2016, 28, 581-590. doi.org/10.1007/s10811-015-0587-4
Mouritsen, O.G.; Dawczynski, C.; Duelund, L.; Jahreis, G.; Vetter, W.; Schröder, M. On the human consumption of the red seaweed dulse (Palmaria palmata (L.) Weber & Mohr). Journal of Applied Phycology 2013, 25, 1777-1791. doi.org/10.1007/s10811-013-0014-7
Jiménez-González, C.; Agrasar, A. M. T.; Mallo, F.; Rúa, M. L.; Fucinos, C. Red seaweed proteins: Valuable marine-origin compounds with encouraging applications. Algal Research 2023, 75, 103262. doi.org/10.1016/j.algal.2023.103262
Taboada, M. C.; Millán, R.; Miguez, M. I. Nutritional value of the marine algae wakame (Undaria pinnatifida) and nori (Porphyra purpurea) as food supplements. Journal of Applied Phycology 2013, 25, 1271-1276. doi.org/10.1007/s10811-012-9951-9
Blikra, M. J.; Altintzoglou, T.; Løvdal, T.; Rognså, G.; Skipnes, D.; Skåra, T.; Sivertsvik, M.; Fernández, E. N. Seaweed products for the future: Using current tools to develop a sustainable food industry. Trends in Food Science & Technology 2021, 118, 765-776. doi.org/10.1016/j.tifs.2021.11.002
Trueb, L. F. Pflanzliche Naturstoffe – Wie Pflanzenprodukte unseren Alltag prägen; Borntraeger Verlagsbuchhandlung, Stuttgart, 2015.
Serafini, I.; Lombardi, L.; Reverberi, M.; Ciccola, A.; Calà, E.; Sciubba, F.; Guiso, P.P.; Aceto, M.; Bianco, A. New advanced extraction and analytical methods applied to discrimination of different lichen species used for orcein dyed yarns: Preliminary results. Microchemical Journal 2018, 138, 447-456. doi.org/10.1016/j.microc.2018.01.033
Calà, E.; Benzi, M.; Gosetti, F.; Zanin, A.; Gulmini, M.; Idone, A.; Serafini, I.; Ciccola, A.; Curini, R.; Whitworth, I.; Aceto, M. Towards the identification of the lichen species in historical orchil dyes by HPLC-MS/MS. Microchemical Journal 2019, 150, 104140. doi.org/10.1016/j.microc.2019.104140
Beecken, H.; Gottschalk, E.M.; v Gizycki, U.; Krämer, H.; Maassen, D.; Matthies, H.G.; Rathjen, C.; Zdhorszky, U.I. Orcein and litmus. Biotechnic & Histochemistry 2003, 78, 289-302. doi.org/10.1080/10520290410001671362

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Boris Mahltig

This work is licensed under a Creative Commons Attribution 4.0 International License.