Markers and signatures methods on textile materials – the possibility of evidence led manufacturing chain and possible uses in the context of textile recycling

Authors

  • Sabrina Mauter Niederrhein University of Applied Sciences, Faculty of Textile and Clothing Technology, 41065 Moenchengladbach, Germany
  • Victoria Kern Niederrhein University of Applied Sciences, Faculty of Textile and Clothing Technology, 41065 Moenchengladbach, Germany
  • Lisa Marie Hinz Niederrhein University of Applied Sciences, Faculty of Textile and Clothing Technology, 41065 Moenchengladbach, Germany
  • Neele Ucke Niederrhein University of Applied Sciences, Faculty of Textile and Clothing Technology, 41065 Moenchengladbach, Germany
  • Lilia Sabantina Faculty of Apparel Engineering and Textile Processing, Berlin University of Applied Sciences -HTW Berlin

DOI:

https://doi.org/10.25367/cdatp.2025.6.p83-95

Keywords:

Greenwashing, DNA marker, Textiles, Textile recycling, counterfeiting, Textile marking

Abstract

A green image is becoming increasingly important for companies in the textile industry and recycling textiles is a problem because fibers are difficult to identify and therefore difficult to recycle. Especially the cross-linking of DNA and textile materials can achieve a significant benefit within the textile industry. In addition to DNA markers, alternatives like cryptographic marking, RFID technology, and other innovative approaches will be discussed. Markers and signature methods on textile materials are important for efficient recycling processes, but this topic has not yet been sufficiently researched. This review gives an overview of ongoing activities on signature methods and recycling approaches for textiles and focuses on the recycling of garments to address the challenges and solutions within the textile- and fashion industry.

References

Forschungskuratorium Textil e. V. Perspektiven 2035-Ein Leitfaden für die textile Zukunft, Gesamtverband der deutschen Textil- und Bekleidungsindustrie 2020, https://textil-mode.de/de/documents/1202/ Perspektiven2035_Langfassung.pdf (accessed on 01.07.2022).

Futtrup, R.; Tsalis, G.; Pedersen, S.; Dean, M.; Benson, T.; Aschemann-Witzel, J. Is the whole more than the sum of its parts? Challenges and opportunities for a holistic consumer-friendly sustainability label on food. Sustainable Production and Consumption 2021, 28, 1411-1421. DOI: https://doi.org/10.1016/j.spc.2021.08.014.

Nakhate, P.H.; Moradiya, K.K.; Patil, H.G.; Marathe, K.V.; Yadav, G.D. Case study on sustainability of textile wastewater treatment plant based on lifecycle assessment approach. Journal of Cleaner Production 2020, 245, 118929. DOI: https://doi.org/10.1016/j.jclepro.2019.118929.

Stone, C.; Windsor, F.M.; Munday, M.; Durance, I. Natural or synthetic – how global trends in textile usage threaten freshwater environments. Science of The Total Environment 2020, 718, 134689. DOI: https://doi.org/10.1016/j.scitotenv.2019.134689.

Yildirim, F.F.; Hasçelik, B.; Yumru, S.; Palamutcu, S. Analysis of water consumption and potential savings in a cotton textile dye house in Denizli, Turkey. In Water in Textiles and Fashion, Subramanian Senthilkannan Muthu, Ed.; Woodhead Publishing, 2019; pp. 115-134. DOI: https://doi.org/10.1016/B978-0-08-102633-5.00007-5.

Ahmed, W.A.H.; MacCarthy, B.L. Blockchain-Enabled Supply Chain Traceability in the Textile and Apparel Supply Chain: A Case Study of the Fiber Producer, Lenzing. Sustainability 2021, 13, 10496. DOI: https://doi.org/10.3390/su131910496.

Nayak, R.; Singh, A.; Padhye, R.; Wang. L. RFID in textile and clothing manufacturing: technology and challenges. Fashion and Textiles 2015, 2, 9. DOI: https://doi.org/10.1186/s40691-015-0034-9.

Blachowicz, T.; Wójcik, D.; Surma, M.; Magnuski, M.; Ehrmann, G.; Ehrmann, A. Textile Fabrics as Electromagnetic Shielding Materials—A Review of Preparation and Performance. Fibers 2023, 11, 29. DOI: https://doi.org/10.3390/fib11030029.

Bauer, L.; Brandstäter, L.; Letmate, M.; Palachandran, M.; Wadehn, F.O.; Wolfschmidt, C.; Grothe, T.; Güth, U.; Ehrmann, A. Electrospinning for the Modification of 3D Objects for the Potential Use in Tissue Engineering. Technologies 2022, 10, 66. DOI: https://doi.org/10.3390/technologies10030066.

Richter, N.; Tuvshinbayar, K.; Ehrmann, G.; Ehrmann, A. Usability of Inexpensive Optical Pulse Sensors for Textile Integration and Heartbeat Detection Code Development. Electronics 2023, 12, 1521. DOI: https://doi.org/10.3390/electronics12071521.

Suresh, S.; Chakaravarthi, G. RFID technology and its diverse applications: A brief exposition with a proposed Machine Learning approach. Measurement 2022, 195, 111197. DOI: https://doi.org/10.1016/j.measurement.2022.111197.

Pljonkin, A.; Rumyantsev, K.; Singh, P.K. Synchronization in Quantum Key Distribution Systems. Cryptography 2017, 1, 18. DOI: https://doi.org/10.3390/cryptography1030018.

Pljonkin, A.; Petrov, D.; Sabantina, L.; Dakhkilgova, K. Nonclassical Attack on a Quantum Key Distribution System. Entropy 2021, 23, 509. DOI: https://doi.org/10.3390/e23050509.

Corbellini, S.; Ferraris, F.; Parvis, M. A Cryptographic System for Brand Authentication and Material Traceability in the Textile Industry. In IEEE Instrumentation and Measurement Technology Conference Proceedings Sorrento, Italy, 2006; pp. 1331-1335. DOI: https://doi.org/10.1109/IMTC.2006.328556.

Kumar, V.; Koehl, L.; Zeng, X.; Ekwall, D. Coded yarn based tag for tracking textile supply chain. Journal of Manufacturing Systems 2017, 42, 124-139. DOI: https://doi.org/10.1016/j.jmsy.2016.11.008.

Jiang, Q.; Yuan, H.; Dong, K.; Lin, J.H.; Wu, L.; Tang, Y. Continuous and scalable manufacture of aggregation induced emission luminogen fibers for anti-counterfeiting and hazardous gas detecting smart textiles. Materials & Design 2021, 205, 109761. DOI: https://doi.org/10.1016/j.matdes.2021.109761.

SigNature® T Textile Brand Protection from Applied DNA Sciences. Retrieved from: https://adnas.com/synthetic-textile-sustainability/ (accessed on 13.06.2022).

Proneem. 2022, D.N.A. Textiletm. Retrieved from: https://www.proneem.com/de/notre-savoir-faire/ (accessed on 17.06.2022).

Tailorlux. 2022. Retrieved from: https://www.tailorlux.com/ (accessed on 03.06.2022).

Patent. WO2013091623A8. Verfahren zur Überprüfung der Einhaltung einer vorgegebenen Soll-Konzentration einer ersten Komponente in einem aus Thermoplast bestehenden Artikel, sowie erste Komponente einer Thermoplaste. Retrieved from: https://patents.google.com/patent/WO2013091623A8/de?oq=WO+2013%2f091623+A8 (accessed on 03.06.2022).

H&M Group, 2021. Retrieved from: https://hmgroup.com/our-stories/tracing-the-story-one-thread-at-a-time/ (accessed on 03.06.2022).

TextileGenesis, 2021. Retrieved from: https://textilegenesis.com/ (accessed on 03.06.2022).

Patent. EP2831268A1. Molecular code systems. Retrieved from: https://patents.google.com/patent/EP2831268A1/no. (accessed on 23.03.2023).

Patent. US 2014/0256881. Alkaline Activation for Immobilization of DNA Taggants. A Retrieved from: https://patents.google.com/patent/US20140256881?oq=US+2014%2f0256881 (accessed on 23.03.2023).

Patent. US 2016/0246892. Multimode Image and Spectral Reader. Retrieved from: https://patents.google.com/patent/US20160246892A1/en?oq=US+2016%2f0246892 (accessed on 23.03.2023).

Patent. GB2592691. Method for Capturing and Analysing a Hyperspectral Image. Retrieved from: https://patents.google.com/patent/GB2592691A/en?oq=GB2592691 (accessed on 23.03.2023).

Wang, X.; Li, D.; Yu, Y. Current Situation and Optimization Countermeasures of Cotton Subsidy in China Based on WTO Rules. Agriculture 2022, 12, 1245. https://doi.org/10.3390/agriculture12081245.

Bundesministerium für Arbeit und Soziales. 2020. Sorgfaltspflichtengesetz. Retrieved from https://www.bmas.de/DE/Service/Gesetze-und-Gesetzesvorhaben/gesetz-unternehmerische-sorgfaltspflichten-lieferketten.html.

Chan, K.K. Supply chain traceability systems—robust approaches for the digital age. In The Digital Supply Chain; Bart L. MacCarthy, Dmitry Ivanov, Eds.; Elsevier, 2022; pp, 163-179, DOI: https://doi.org/10.1016/B978-0-323-91614-1.00010-1.

Agrawal, T.K.; Kumar, V.; Pal, R.; Wang, L.; Chen, Y. Blockchain-based framework for supply chain traceability: A case example of textile and clothing industry. Computers & Industrial Engineering 2021, 154, 107130. DOI: https://doi.org/10.1016/j.cie.2021.107130.

Wang, K.; Kumar, V.; Zeng, X.; Koehl, L.; Tao, X.; Chen, Y. Development of a Textile Coding Tag for the Traceability in Textile Supply Chain by Using Pattern Recognition and Robust Deep Learning. International Journal of Computational Intelligence Systems 2019, 12(2), 713-722. DOI: https://doi.org/10.2991/ijcis.d.190704.002.

Haelixa. 2021. Retrieved from https://haelixa.com/proposition/#process (accessed on 03.06.2022).

Haelixa, 2022. Retrieved from https://www.haelixa.com/company/ (accessed on 03.06.2022).

Agrawal, T.K.; Koehl, L.; Campagne, C. Implementing traceability using particle randomness-based textile printed tags. IOP Conference Series: Materials Science and Engineering 2017, 254(7), 072001. DOI: https://doi.org/10.1088/1757-899X/254/7/072001.

El-Mossalamy, E.H.; Batouti, M.E.L.; Fetouh, H.A. The role of natural biological macromolecules: Deoxyribonucleic and ribonucleic acids in the formulation of new stable charge transfer complexes of thiophene Schiff bases for various life applications. International Journal of Biological Macromolecules 2021, 193, Part B, 1572-1586. DOI: https://doi.org/10.1016/j.ijbiomac.2021.10.220.

Lindström, K.; Sjöblom, T.; Persson, A.; Kadi, N. Improving Mechanical Textile Recycling by Lubricant Pre-Treatment to Mitigate Length Loss of Fibers. Sustainability 2020, 12, 8706. DOI: https://doi.org/10.3390/su12208706.

Sanchis-Sebastiá, M.; Ruuth, E.; Stigsson, L.; Galbe, M.; Wallberg, O. Novel sustainable alternatives for the fashion industry: A method of chemically recycling waste textiles via acid hydrolysis. Waste Management 2021, 121, 248-254.

Sandin, G.; Peters, G.N. Environmental impact of textile reuse and recycling – A review. Journal of Cleaner Production 2018, 184, 353-365. DOI: https://doi.org/10.1016/j.jclepro.2018.02.266.

Ndagano, U.N.; Cahill, L.; Smullen, C.; Gaughran, J.; Kelleher, S.M. The Current State-of-the-Art of the Processes Involved in the Chemical Recycling of Textile Waste. Molecules 2025, 30, 299. DOI: https://doi.org/10.3390/molecules30020299.

Bayern Innovativ GmbH, Textil & Nachhaltigkeit, Bayern Innovativ 2018. Retrieved from: https://www.bayern-innovativ.de/de/seite/studie-nachhaltigkeit (accessed on 01.07.2022).

Peters, G.M.; Sandin, G.; Spak, B. Environmental Prospects for Mixed Textile Recycling in Sweden. ACS Sustainable Chem. Eng. 2019, 7(13),11682–11690. DOI: https://doi.org/10.1021/acssuschemeng.9b01742.

Ramírez-Escamilla, H.G.; Martínez-Rodríguez, M.C.; Padilla-Rivera, A.; Domínguez-Solís, D.; Campos-Villegas, L.E. Advancing Toward Sustainability: A Systematic Review of Circular Economy Strategies in the Textile Industry. Recycling 2024, 9, 95. DOI: https://doi.org/10.3390/recycling9050095.

Harmsen, P.; Scheffer, M.; Bos, H. Textiles for Circular Fashion: The Logic behind Recycling Options. Sustainability 2021, 13, 9714. DOI: https://doi.org/10.3390/su13179714.

Payne, A. Open- and closed-loop recycling of textile and apparel products. In Handbook of Life Cycle Assessment (LCA) of textiles and clothing, Subramanian Senthilkannan Muthu, Ed.; Woodhead Publishing, 2015; pp. 103–123. DOI: https://doi.org/10.1016/B978-0-08-100169-1.00006-X.

Athanasopoulos, P.; Zabaniotou, A. Post-consumer textile thermochemical recycling to fuels and biocarbon: A critical review. Science of The Total Environment 2022, 834, 155387. DOI: https://doi.org/10.1016/j.scitotenv.2022.155387.

Sonnenberg, N.C.; Stols, M.J.; Taljaard-Swart, H.; Marx-Pienaar, N.J.M.M. Apparel disposal in the South African emerging market context: Exploring female consumers’ motivation and intent to donate post-consumer textile waste. Resources, Conservation and Recycling 2022, 182, 106311. DOI: https://doi.org/10.1016/j.resconrec.2022.106311.

Mäkelä, M.; Rissanen, M.; Sixta, H. Machine vision estimates the polyester content in recyclable waste textiles. Resources, Conservation and Recycling 2020, 161, 105007. DOI: https://doi.org/10.1016/j.resconrec.2020.105007.

Bengtsson, J.; Peterson, A.; Idström, A.; de la Motte, H.; Jedvert, K. Chemical Recycling of a Textile Blend from Polyester and Viscose, Part II: Mechanism and Reactivity during Alkaline Hydrolysis of Textile Polyester. Sustainability 2022, 14, 6911. DOI: https://doi.org/10.3390.

Harmsen, P.; Scheffer, M.; Bos, H. Textiles for Circular Fashion: The Logic behind Recycling Options. Sustainability 2021, 13, 9714. DOI: https://doi.org/10.3390/su13179714.

Keßler, L.; Matlin, S.A.; Kümmerer, K. The contribution of material circularity to sustainability—Recycling and reuse of textiles. Current Opinion in Green and Sustainable Chemistry 2021, 32, 100535. DOI: https://doi.org/10.1016/j.cogsc.2021.100535.

Huang, J.; Veksha, A.; Chan, W.P.; Giannis, A.; Lisak, G. Chemical recycling of plastic waste for sustainable material management: A prospective review on catalysts and processes. Renewable and Sustainable Energy Reviews 2022, 154,111866. DOI: https://doi.org/10.1016/j.rser.2021.111866.

Wojnowska-Baryła, I.; Bernat, K.; Zaborowska, M. Strategies of Recovery and Organic Recycling Used in Textile Waste Management. Int. J. Environ. Res. Public Health 2022, 19, 5859. DOI: https://doi.org/10.3390/ijerph19105859.

Damayanti, D.; Wulandari, L.A.; Bagaskoro, A.; Rianjanu, A.; Wu, H.S. Possibility Routes for Textile Recycling Technology. Polymers 2021, 13, 3834. DOI: https://doi.org/10.3390/polym13213834.

Du, W.; Zheng, J.; Li, W.; Liu, Z.; Wang, H.; Han, X. Efficient Recognition and Automatic Sorting Technology of Waste Textiles Based on Online Near infrared Spectroscopy and Convolutional Neural Network. Resources, Conservation and Recycling 2022, 180, 106157. DOI: https://doi.org/10.1016/j.resconrec.2022.106157.

Paulauskaite-Taraseviciene, A.; Noreika, E.; Purtokas, R.; Lagzdinyte-Budnike, I.; Daniulaitis, V.; Salickaite-Zukauskiene, R. An Intelligent Solution for Automatic Garment Measurement Using Image Recognition Technologies. Appl. Sci. 2022, 12, 4470. DOI: https://doi.org/10.3390/app12094470.

Cura, K.; Rintala, N.; Kamppuri, T.; Saarimäki, E.; Heikkilä, P. Textile Recognition and Sorting for Recycling at an Automated Line Using Near Infrared Spectroscopy. Recycling 2021, 6, 11. DOI: https:// doi.org/10.3390/recycling6010011.

Bergfjord, C.; Holst, B. A procedure for identifying textile bast fibres using microscopy: Flax, nettle/ramie, hemp and jute. Ultramicroscopy 2010, 110, 1192–1197. DOI: https://doi.org/10.1016/j.ultramic.2010.04.014.

Sharkey, M.; Coggins, M. The Invisible Barrier to Safe Textile Recycling. Front. Sustain. 2020, 3, 876683. DOI: 10.3389/frsus.2022.876683.

Pensupa, P. Recycling of end-of-life clothes, in Sustainable Technologies for Fashion and Textiles, R. Nayak, Ed.; Sawston: Woodhead Publishing, 2020; pp. 251–309. DOI: 10.1016/B978-0-08-102867-4.00012-8.

Zhou, J.; Yu, L.; Ding, Q.; Wang, R. Textile Fiber Identification Using Near-Infrared Spectroscopy and Pattern Recognition. Autex Research Journal 2019, 19(2), 201-209. DOI: https://doi.org/10.1515/aut-2018-0055.

Zhou, C.; Han, G.; Via, B.K.; Song, Y.; Gao, S.; Jiang, W. Rapid identification of fibers from different waste fabrics using the near-infrared spectroscopy technique. Textile Research Journal 2019, 89(17), 3610-3616. DOI: 10.1177/0040517518817043.

Su, Y.; Yu, B.; Wang, S.; Cong, H.; Shen, Y. NIR-II bioimaging of small organic molecule. Biomaterials 2021, 271, 120717. DOI: https://doi.org/10.1016/j.biomaterials.2021.120717.

Li, Z.; Ding, X.; Cong, H.; Wang, S.; Yu, B.; Shen, Y. Recent advances on inorganic lanthanide-doped NIR-II fluorescence nanoprobes for bioapplication. Journal of Luminescence 2020, 228, 117627. DOI: https://doi.org/10.1016/j.jlumin.2020.117627.

Riba, J.R.; Cantero, R.; Canals, T.; Puig, R. Circular economy of post-consumer textile waste: Classification through infrared spectroscopy. Journal of Cleaner Production 2022, 272, 123011. DOI: https://doi.org/10.1016/j.jclepro.2020.123011.

Luo, C.; Gil, I.; Fernández-García, R. Experimental comparison of three electro-textile interfaces for textile UHF-RFID tags on clothes. AEU – International Journal of Electronics and Communications 2022, 146, 154137. DOI: https://doi.org/10.1016/j.aeue.2022.154137.

Lui, A.; Lo, C.K.Y. Measuring the impact of radio frequency identification (RFID) technologies in improving the efficiency of the textile supply chain. In Fashion Supply Chain Management Using Radio Frequency Identification (RFID) Technologies; W.K. Wong, Z.X. Guo, Eds.; Woodhead Publishing, 2014; pp. 187-202. DOI: https://doi.org/10.1533/9780857098115.187.

Azevedo, S.G.; Prata, P.; Fazendeiro, P. The role of radio frequency identification (RFID) technologies in improving process management and product tracking in the textiles and fashion supply chain. In Fashion Supply Chain Management Using Radio Frequency Identification (RFID) Technologies; W.K. Wong, Z.X. Guo, Eds.; Woodhead Publishing, 2014; pp. 42-69. DOI: https://doi.org/10.1533/9780857098115.42.

Egloff, B.A.; Wehrli, D. How Hands-on Experimentation in Mechanical Textile Recycling Influences Existing Waste Management Systems. Journal of Textile Design Research and Practice 2021, 9(2), 210-225. DOI: 10.1080/20511787.2021.1923200.

Wang, S. Brief Analysis on Closed-loop Ecosystem of Textile and Clothing Recycling. IOP Conference Series: Earth and Environmental Science 2018, 186(4), 012058. DOI: https://doi.org/10.1088/1755-1315/186/4/012058.

Benyathiar, P.; Kumar, P.; Carpenter, G.; Brace, J.; Mishra, D.K. Polyethylene Terephthalate (PET) Bottle-to-Bottle Recycling for the Beverage Industry: A Review. Polymers 2022, 14, 2366. DOI: https:// doi.org/10.3390/polym14122366.

Wiedemann, S.G.; Biggs, L.; Clarke, S.J.; Russell, S.J. Reducing the Environmental Impacts of Garments through Industrially Scalable Closed-Loop Recycling: Life Cycle Assessment of a Recycled Wool Blend Sweater. Sustainability 2022, 14, 1081. DOI: https://doi.org/10.3390/su14031081.

Casciani, D.; Chkanikova, O.; Pal, R. Exploring the nature of digital transformation in the fashion industry: opportunities for supply chains, business models, and sustainability-oriented innovations. Sustainability: Science, Practice and Policy 2022, 18(1), 773-795. DOI: 10.1080/15487733.2022.2125640.

Martina, R.A.; Oskam, I.F. Practical guidelines for designing recycling, collaborative, and scalable business models: A case study of reusing textile fibres into biocomposite products. Journal of Cleaner Production 2021, 318, 128542. DOI: https://doi.org/10.1016/j.jclepro.2021.128542.

Guerra, B.C.; Shahi, S.; Mollaei, A.; Skaf, N.; Weber, O.; Leite, F.; Haas, C. Circular economy applications in the construction industry: A global scan of trends and opportunities. Journal of Cleaner Production 2021, 324, 129125. DOI: https://doi.org/10.1016/j.jclepro.2021.129125.

European Parliament, 2022. Directive 2008/98/EC on waste, as amended by Directive (EU) 2018/851 of the European Parliament and of the Council of 30 May 2018. Retrieved from: https://www.europarl.europa.eu/doceo/document/E-9-2020-004882-ASW_EN.html#ref2 (accessed on 12.07.2022).

Palm, D.; Elander, M.; Watson, D.; Kiørboe, N.; Salmenperä, H.; Dahlo, H.; Moliis, K.; Lyng, K-A.; Valente, C. Gislason. S; Tekie, H.; Rydberg, T. Towards a nordic textile strategy. Nordic Council Of Ministers 2014, Copenhagen 2014, ISSN 0908-6692. DOI: http://dx.doi.org/10.6027/TN2014-538.

Workflow represented by blocks as representation for closed and open loop recycling of textiles

Downloads

Published

2025-09-28

How to Cite

Mauter, S., Kern, V., Hinz, L. M., Ucke, N., & Sabantina, L. (2025). Markers and signatures methods on textile materials – the possibility of evidence led manufacturing chain and possible uses in the context of textile recycling. Communications in Development and Assembling of Textile Products, 6(1), 83–95. https://doi.org/10.25367/cdatp.2025.6.p83-95

Issue

Section

Peer-reviewed articles

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 > >> 

You may also start an advanced similarity search for this article.